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1. Introduction 

From the perspective of supply and demand in the electricity 

market, there are a variety of inevitable factors that affect both 

demand and supply (e.g., soaring demand, energy policy, and raw 

material price) [1, 2]. In the case of the traditional power trading 

market, it generally consists of exchanges, power plants, and 

consumers [3]. For instance, the retail electricity portion in South 

Korea relies on the Korea Electric Power Corporation and the South 

Korean electricity price depends on six power generation companies 

(e.g., Korea Hydro & Nuclear Power, Korea South-East Power, 

Korea Midland Power, Korea Western Power, Korea Southern 

Power, and Korea East-West Power). The Korean electric power 

market has the following three characteristics [4]: 1) there exists 

a mandatory power pool except for small-scale renewables less 

than 1 MW with private LNG power generators or unconnected 

islands that trade directly with Korea Electric Power Corporation; 

2) cost-based pool (CBP) market (i.e., the power generation 

fluctuation ratio is determined in advance according to power 

generators’ bid); and 3) a day-ahead market, in which the transaction 

price is determined one day earlier. The day-ahead market is 

explicitly related to the system marginal price (SMP), which is 

underpinned by the variable ratio of marginal generators to the 

market price while making sure to meet the forecast demand for 

each hour [5]. The SMP is associated with the result from the 

combination of different dispatchable power generators, which 

implies that it is equal to the most expensive electricity generation 

price among all available power generators [6]. 
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Abstract

Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines 

electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been 

several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been 

conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven 

framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the 

autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such 

as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a 

forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using 

long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the 

study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit 

model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute 

significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy 

networks. 
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Therefore, it is of great importance to accurately predict SMP 

prices to contribute to energy management systems. Although the 

main factors that affect the SMP are well known, developing 

forecasting models for the SMP can present a challenge because 

they contain a number of underlying variables [18]. 

Accordingly, studies on SMP forecasting have been consistently 

conducted [19]. The generalized autoregressive conditional 

heteroscedasticity model was developed to estimate SMP volatility 

and examine the effect of power supply on the SMP [20]. Detailed 

information regarding SMP prediction from a mathematical model 

provided insight into the operating conditions of the Korean power 

market [21]. In addition, stochastic time-series, causal, and machine 

learning models to predict the SMP have been suggested and 

compared with one another through quantitative analysis [22]. 

Another comparative study to determine the performance between 

a mathematical model and a machine learning model for electricity 

rate prediction has also been presented [23].

Recently, research on deep learning-based forecasting models 

has attracted much attention. Deep learning uses a computational 

model consisting of hidden processing layers as a detailed field 

of machine learning that can be learned and predicted by discovering 

rules or structures among various and complex data [24]. For 

time-series data, the recurrent neural network (RNN) [25], long 

short-term memory (LSTM) [26], gated recurrent unit (GRU) [27], 

or bidirectional LSTM (BiLSTM) [28] can outperform other deep 

learning algorithms [29]. A hybrid LSTM model in combination 

with the wavelet transform has been proposed to improve prediction 

accuracy [30]. In another study, a hybrid model incorporating the 

wavelet transform, LSTM, and stacked auto-encoder was developed 

to enhance the existing forecasting model [31]. 

However, there have been few studies on the design of the 

framework for SMP forecasting, including data processing, model 

development, and model evaluation from the perspective of a data 

pipeline. The SMP depends on the price of various raw materials 

such as crude oil that is normally determined around 2 to 3 weeks 

earlier and also it is related to principles of energy demand/supply. 

Therefore, the proposed SMP forecasting model can contribute to 

the energy system management, particularly indicating that 

companies take advantage of it (i.e., in the case of South Korea, 

approximately 63% of the total energy demand is consumed in 

industries).

To this end, in this study, the following steps are implemented. 

First, long-term time-series data related to electricity are processed. 

Second, different forecasting models considering conventional 

machine learning and deep learning are developed. Third, a tuning 

technique that determines the optimal hyper-parameters is integrated. 

Fourth, results from the suggested models are demonstrated using 

various evaluation metrics. Lastly, the optimal forecasting models 

to be fit-for-purpose for a case study are selected via information 

criteria. 

2. Material and methods

2.1 Data preparation

Figure 1 illustrates the general trend of the SMP for the last 

six years obtained from the Korea Power Exchange (KPX). The 

figure shows that the standard deviation of the SMP for the summer 

months (May to August) in South Korea is approximately 9.13, 

about half of that for the rest of the seasons, which is approximately 

18.07. In addition, since October 2021, there has been a sharp 

Table 1. Primary factors for the SMP

Factor Description Reference

Oil price Great fluctuations in problems of high electricity demand, transportation, and delivery. [8, 9] 

Plant cost Financing, construction, maintenance, and operating costs. [10, 11] 

Distribution Connection between power plants and consumers. [11,12] 

Weather Increase in demand for heating or cooling. [13–15] 

Regulation In some regions, public service/utility committees completely regulate prices. [16,17] 

(a) Monthly SMP

(b) Yearly SMP

Figure 1. Time-series SMP data for South Korea.
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rise in the SMP, an occurrence of which has not been observed 

before.

2.2 Algorithm for the framework of the SMP forecasting 

model

The aim of this study is to develop an optimal forecasting model 

of the SMP using an artificial intelligence-based framework to 

contribute to the improvement of the power system.

Figure 2 depicts the proposed framework of this study, which 

consists of data processing, model development, and model 

evaluation.

The main steps of the data processing include data collection, 

data averaging to improve model performance, and data splitting 

to prepare for supervised learning. According to the KPX, SMP 

data are estimated per hour; therefore all SMP datasets are converted 

into daily data by averaging them. In doing so, it is expected that 

overfitting is prevented and model performance is improved. 

Furthermore, inevitable outliers can be smoothed and harmonized 

with the rest of the data. Finally, processed time-series data are 

separated into input and output to be fit-for-purpose for supervised 

learning.

2.2.1 Machine learning-based forecasting model

The autoregressive integrated moving average (ARIMA), which 

is a typical approach to machine learning for time-series forecasting 

models, forecasts future events using p observations and q prediction 

errors after the conversion of stationary time-series data using a 

differencing operation (Eq. (1)) [32]. A model that applies 

seasonality in the ARIMA is called a seasonal autoregressive 

integrated moving average (SARIMA) model [33].

(1)

In stationary time-series data, the characteristics of the data do 

not change over time, and it is easy to analyze data with a constant 

mean and variance. When the mean and variance of the data are 

not constant, logarithmic-scale is taken to make data stationary; 

if the data show a trend or season, the data are converted into 

stationary data using a differencing operation [34], an approach 

of which is used in this study (Figure 3).

2.2.2 Deep learning-based forecasting model

LSTM is a structure that learns by influencing the hidden layer 

through backpropagation (Figure 4(a)). Bidirectional LSTM 

(BiLSTM) is a modified LSTM that solves the problem related 

to the low learning ability of the initial cell in the LSTM (Figure  

4(b)). The GRU is a specialized long-term memory model, which 

requires less demanding computing power than the LSTM (Figure  

4(c)). The primary equations in the GRU network are as follows:

(2)

(3)

Figure 2. Framework of the SMP forecasting model.

(a) SMP raw data trend

(b) Results of the differencing operation

Figure 3. Stationary data process using the differences between two 

consecutive days.
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(4)

(5)

where Wr is a matrix of weights for input data xt and hidden unit 

ht-1 at reset gate rt, Wh is a matrix of weights for xt and ht-1 at 

temporarily hidden gate ht, and Wz is a matrix of weights for 

xt and ht-1 at update gate zt. Each gate has biases. The reset gate 

selects how much past information to forget through the sigmoid 

function result of the weighted summation of the previous hidden 

state and the current input data (Eq. (2)). The temporarily hidden 

gate is a prerequisite for obtaining the hidden gate dependent on 

the hyperbolic tangent (Eq. (3)). The update gate works for the 

previous hidden state and the temporarily hidden gate (Eqs. (4) 

and (5)).

In the case of the LSTM network, short-term memory must be 

considered.

(6)

(7)

(8)

(9)

(10)

(11)

where Whf, Whi, Whg, and Who are matrices of weights associated 

with the hidden state ht-1 of each gate, and Wxf, Wxi, Wxg, and 

Wxo are weights associated with input data xt. The forget gate ft 

that relies on the previous hidden state ht-1 and the input data 

determines whether or not information remains using the sigmoid 

function (Eq. (6)). The input gate it is similar to the forget gate 

but has the objective to remember the current information (Eq. 

(7)). At the same time, the input modulation gate gt depends on 

the previous hidden state, the input data, and hyperbolic tangent 

function (Eq. (8)). The update gate ct is the result based on Eqs. 

(6-8) (Eq. (9)). The output gate ot uses the previous hidden state 

and the current input data (Eq. (10)). The hidden state ht is 

calculated by the update gate and the output gate (Eq. (11)). In 

the BiLSTM, the major mathematical expressions are identical to 

those in the aforementioned LSTM network. 

2.2.3 Hyper-parameter optimization using grid 

search

Grid search is a technique to determine the optimal hyper- 

parameters among all possible hyper-parameters [35]. The ARIMA 

or SARIMA sets the grid based on specific functions such as the 

autocorrelation function and partial autocorrelation function; 

otherwise, the grid search for deep learning models is implemented 

using the feasible range of hyper-parameters. The optimal 

hyper-parameters can be estimated considering the complexity and 

the performance score of the forecasting models. In this study, 

suggested models are run on an Intel Core i7-10700 CPU @2.90 

GHz, 16.0 GB RAM, and NVIDIA GeForce GTX 1650 GPU.

(a) Structure of the LSTM network

(b) Structure of the BiLSTM network

(c) Structure of the GRU network

Figure 4. Proposed deep learning-based forecasting models.
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2.2.4 Optimal model selection using information 

criteria

The objective of the Akaike information criterion (AIC) is to 

compare the performance and complexity of models to select the 

optimal model while the Bayesian information criterion (BIC) 

applies a more significant penalty compared with the AIC (Eqs. 

(12 and 13)) [36]. The smallest value obtained by the AIC and/or 

BIC corresponds to the optimal model.

(12)

(13)

where L  is the maximum likelihood of the model, k is the number 

of parameters in the model, and n is the number of samples. The 

likelihood is a function of estimating the probability distribution 

yn based on the data xn with the specific weight   of the model 

(i.e., how well the model describes the data when it has a specific 

weight (Eq. (14)).   must be determined to ensure that the partial 

differentiation of the log-likelihood function for   is zero. As a 

result, the maximum likelihood is estimated with the optimized 

  (Eqs. (15 and 16)):

(14)

(15)

(16)

2.2.5 Diebold-Mariano test

The Diebold-Mariano (DM) test is a metric to compare the 

forecasting results. The null hypothesis of the DM test is that the 

forecasting result of the comparative model is consistent, and the 

closer the DM score is to 0, the more accurate the null hypothesis 

is established [37]. The DM-test has a negative value when the 

forecasting result of the first model is better than that of the second 

model. If the order of the models is reversed, the value of the 

DM-test can be positive.

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

where ei and ri are the differences between the actual value yi 

and predicted values fi and gi from the different models (Eqs. (18 

and 19)), respectively, n is the number of forecast steps, k is 

the covariance with k lags (Eq. (20)), and SDM is the DM test 

score (Eq. (22)) that follows the standard Gaussian distribution 

if the null hypothesis is established. In the DM test, di is changed 

according to the selection of the loss function. When the loss function 

is the mean squared error (MSE), mean absolute deviation (MAD), 

and mean absolute percentage error (MAPE), di becomes Eq. (23), 

Eq. (24), and Eq. (25), respectively. A case study in this study 

employs the MSE.

Table 2. Optimal hyper-parameters for the machine learning and 

deep learning models.

Model Hyper-parameter Range
Optimal  

value

RNN based model

(BiLSTM, 

LSTM, GRU)

Moving window 5, 7, 15, 30, 45, 60 7

Number of nodes 10, 20, 40, 60, 100 40

Batch size 10, 20, 40 10

ARIMA p 0 to 20 8

d 0 to 20 1

q 0 to 20 1

SARIMA p 0 to 20 8

d 0 to 20 1

q 0 to 20 1

P 0 to 20 2

D 0 to 20 0

Q 0 to 20 2

m 3, 6, 12, 24 12

Moving window: The number of previous data to predict day-ahead 

SMP, Node: Cell that calculates in an artificial neural network, p: 

Trend autoregression order; d: Trend difference order; q: Trend 

moving average order; P: Seasonal autoregressive order; D: Seasonal 

difference order; Q: Seasonal moving average order; m: Number of 

time steps for a single seasonal period
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2.2.6 Evaluation metrics

A set of R2 score, root mean square error (RMSE), mean absolute 

error (MAE), and MAPE are applied for the developed framework 

as criteria for the evaluation of various forecasting models [38].

(26)

(27)

(28)

(29)

where yi is the real value, yi  is the mean value, and yi is the 

forecasting result. The closer the R2 score is to 1, the better the 

model performance (Eq. (26)). It is recommended that other mode 

performance indicators are considered because difficulties in 

distinguishing biased models may arise [39]. The RMSE is the 

standard deviation of residuals based on the Euclidean distance 

between the real and predicted values (Eq. (27)). The MAE determines 

the accuracy of the model by calculating the arithmetic mean of 

the absolute error (Eq. (28)). The MAPE can avoid an underlying 

problem during data scaling but has several drawbacks (e.g., the 

denominator must always have non-zero values.) (Eq. (29)).

3. Results and Discussion

Figure 5 shows the SMP in a 3D heatmap from 2016 to 2021, 

indicating that the SMP of 120 KRW/kWh or more is observed 

since November 2021. Thus, minimizing overfitting for training 

data is imperative to enhance the performance of the forecasting 

model. The suggested framework in this study not only considers 

the model performance score but also selects the optimal forecasting 

model using information criteria.

Figure 6 shows the results of various forecasting models. First, 

machine learning-based models, the ARIMA and SARIMA, learn 

the stationary data from trends and then begin to forecast. Then, 

it can be observed that the models are able to forecast rapidly 

rising patterns. In deep learning-based models, the LSTM and 

BiLSTM demonstrate good performance for a short-term forecast, 

whereas these models suffer when there is a rapidly rising pattern. 

However, the GRU performs well for both the long-term forecast 

and rapidly rising patterns.

Table 3 provides the comparison results of the forecast data 

for each model using a DM test. The model performance is analyzed 

with evaluation metrics, and model complexity is analyzed with 

the AIC/BIC model. The DM-test compares the forecasting results 

of the model. Therefore, DM-test was adopted to figure out an 

efficient model able to minimize computational costs and training 

time and maximize model performance. A set with the GRU and 

SARIMA shows the most similar DM score of 0.558, followed Figure 5. 3D heatmap of long-term historical data of SMP

Figure 6. Test results of different forecasting models.

Table 3. Comparison of similarity between forecasting models 

using the DM test.

Set of models MSE-based DM p-value

SARIMA/ARIMA 0.68 0.518

BiLSTM/ARIMA 1.489 0.18

BiLSTM/SARIMA 1.472 0.185

GRU/ARIMA 0.743 0.482

GRU/SARIMA 0.558 0.594

GRU/BiLSTM -1.407 0.202

LSTM/ARIMA 1.794 0.116

LSTM/SARIMA 1.784 0.118

LSTM/BiLSTM 2.307 0.054

LSTM/GRU 1.718 0.129
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by the GRU/ARIMA and SARIMA/ARIMA with scores of 0.68 

and 0.743, respectively. For the p-value of the other models, scores 

vary from 0.054 to 0.202, implying that the similarity of the results 

between any two models is less than 20%. It can be inferred that 

an optimal model selection should be conducted. 

Table 4 shows the model performance for the evaluation metrics. 

In the training dataset, the GRU-based forecasting model 

outperforms other models (i.e., R2 score: 0.965, RMSE: 2.489, MAE: 

1.512, and MAPE: 0.02). In the test dataset, machine learning-based 

models and deep learning-based models are separately compared 

to reflect the approach of the algorithm structure (Figure 7). 

According to the results from the evaluation metrics, the ARIMA 

and SARIMA show similar performance. In the deep learning-based 

models, the GRU demonstrates great performance compared with 

the other deep learning-based forecasting models.

Finally, the AIC and BIC are used to compare the complexity 

of the models, and the optimal forecasting model is chosen. As 

previously mentioned, because deep learning-based models and 

machine learning-based models rely on different algorithm 

structures, they have to be separately compared. For the deep 

learning-based models, the complexity of the GRU is the least 

with AIC and BIC scores of approximately 11,673 and 32,904, 

respectively. For the machine learning-based model, the ARIMA 

has the lowest AIC and BIC values corresponding to 1,253 and 

(a) Radar chart of the deep learning-based models

 (b) Radar chart of the machine learning-based models

Figure 7. Comparison of the forecasting models with a radar chart.

Table 4. Evaluation metrics for the forecasting models.

BiLSTM GRU LSTM ARIMA SARIMA

Training dataset

R2 0.963 0.965 0.954 - -

RMSE 2.574 2.489 2.848 - -

MAE 1.61 1.512 1.73 - -

MAPE 0.021 0.02 0.023 - -

Test datasets

R2 0.878 0.943 0.899 0.972 0.972

RMSE 8.453 5.777 7.695 4.076 4.065

MAE 4.74 3.388 4.361 2.253 2.262

MAPE 0.048 0.039 0.046 0.025 0.025

(a) Bar chart of the AIC/BIC for the deep learning-based models

(b) Bar chart of the AIC/BIC for the machine learning-based models

Figure 8. Optimal forecasting models based on information criteria.
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1,294, respectively. Therefore, the results from the information 

criteria show that the ARIMA and GRU can be optimal forecasting 

models for the SMP.

As a future study, this work can be extended to develop hybrid 

models by combining diverse data-driven techniques such as wavelet 

transform and attention algorithms. Moreover, a significant data 

pipeline to better predict the SMP can be integrated with the 

proposed framework by considering implicit factors (e.g., oil prices, 

power plant costs, transportation and distribution system costs, and 

government regulations).

4. Conclusions

Research on SMP forecasting is crucial because inaccuracies 

in SMP forecasting can affect a variety of industries. In this study, 

the framework for SMP forecasting was developed and includes 

data processing, model development, model evaluation, and optimal 

model selection. A case study of South Korea was applied for 

the proposed framework using long-term time-series data from 2016 

to 2021.

Machine learning-based models (ARIMA and SARIMA) and 

deep learning-based models (LSTM, BiLSTM, and GRU) were 

employed to construct the framework while the DM test and 

information criteria were integrated with traditional evaluation 

metrics. As a result, while the ARIMA and SARIMA demonstrated 

similar performance scores, in terms of information criteria, the 

optimal machine learning-based model was the ARIMA, showing 

AIC and BIC scores that were 0.45% and 1.67% lower than the 

SARIMA, respectively. In the case of the deep learning-based 

models, the GRU outperformed the other deep learning-based 

models (i.e., GRU demonstrated the highest R2 score of 0.94, and 

the RMSE, MAE, and MAPE were approximately 31%, 28%, and 

18% lower than the BiLSTM, which was identified as the worst 

model).

We believe that the proposed framework can be integrated with 

other algorithms and data variables to contribute to SMP-related 

research and the electricity energy market.
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