청정에너지기술

NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향

박지혜¹, 조광희², 황라현², 백정훈³, 이광복^{1,*}

¹충남대학교 화학공학교육과 34134 대전광역시 유성구 대학로 99 ²충남대학교 에너지과학기술대학원 34134 대전광역시 유성구 대학로 99 ³한국에너지기술연구원 변환저장소재연구실 34129 대전광역시 유성구 가정로 152

(2020년 6월 6일 접수; 2020년 6월 16일 수정본 접수; 2020년 6월 22일 채택)

Effect of Steam-Treated Zeolite BEA Catalyst in NH₃-SCR Reaction

Ji Hye Park¹, Gwang Hee Cho², Ra Hyun Hwang², Jeong Hun Baek³, and Kwang Bok Yi^{1,*}

 ¹Department of Chemical Engineering Education, Chungnam National University 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
 ²Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
 ³Energy Conversion & Storage Materials Laboratory, Korea Institute of Energy Research 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, south Korea

(Received for review June 6, 2020; Revision received June 16, 2020; Accepted June 22, 2020)

요 약

아산화질소(N₂O)는 6대 온실가스 중 하나로 이산화탄소(CO₂)의 310배에 해당하는 지구온난화지수(global warming potential, GWP)를 나타내어 N₂O를 저감하는 것은 필수적이다. 선택적 촉매환원법(selective catalytic reduction, SCR)은 대기 오염 물질의 하나인 NOx의 제거를 위해 암모니아를 환원제로 사용하여 무해한 N₂ 및 H₂O로 전환하는 기술로 높은 탈질효율을 나타낸다. 본 연구에서는 NH₃-SCR반응에서 스팀 처리된 Fe-BEA 촉매가 활성에 미치는 영향을 조사하기 위하여 Fe-BEA 촉매는 Fe를 이온교환하기 전, 고정층 반응기로 100 ℃에서 2 h 동안 스팀 처리 되었다. 제조된 촉매의 NH₃-SCR반응 테스트 는 고정층 반응기로 WHSV = 180 h⁻¹, 370 ~ 400 ℃에서 수행되었다. 100 ℃에서 스팀 처리된 Fe-BEA(100) 촉매가 370 ~ 390 ℃에서 Fe-BEA 촉매보다 다소 높은 활성을 나타내었다. NH₃-SCR 활성에 영향을 주는 원인을 파악하기 위하여 제조된 촉매 는 BET, ICP, NH₃-TPD, H₂-TPR, ²⁷Al MAS NMR을 통하여 특성분석 되었다. H₂-TPR결과를 통해 Fe-BEA(100) 촉매가 Fe-BEA 촉매 보다 isolated Fe³⁺의 환원이 더 많이 일어난 것을 확인하였으며, 스팀 처리는 활성종인 isolated Fe³⁺의 양을 늘려 주어 활성이 증가한 것으로 판단된다.

주제어 : 암모니아 선택적 촉매환원법, 베타 제올라이트, Fe-BEA, 스팀 처리, N2O저감

Abstract : Nitrous oxide (N₂O) is one of the six greenhouse gases, and it is essential to reduce N₂O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO₂). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N₂ and H₂O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 \degree C for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH₃-SCR reaction. NH₃-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h⁻¹, 370 to 400 \degree C in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 \degree C showed a somewhat higher activity than the Fe-BEA catalyst at 370 to

^{*} To whom correspondence should be addressed.

E-mail: cosy32@cnu.ac.kr; Tel: +82-42-821-8583; Fax: +82-42-821-8864

doi: 10.7464/ksct.2020.26.2.145 pISSN 1598-9712 eISSN 2288-0690

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licences/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

390 °C. The catalysts were characterized by BET, ICP, NH₃-TPD, H₂-TPR, and ²⁷Al MAS NMR in order to determine the cause affecting NH₃-SCR activity. The H₂-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe^{3+} than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe^{3+} as an active species, thus increasing the activity.

Keywords : NH₃-selective catalytic reduction (SCR), zeolite BEA, Fe-BEA, steam treatment, N₂O reduction

1. 서 론

질소산화물(NOX)은 연료 중의 질소성분이 산화되면서 생성 되는 fuel NOX와 공기 중의 질소가 1000 ℃ 이상의 고온에서 산화되면서 생성되는 thermal NOX 등으로 분류되며 자동차 배 기가스, 발전설비 등에서 주로 발생된다. 질소산화물은 NO, NO₂, N₂O, N₂O₄ 등의 형태로 존재하며, 이러한 질소산화물은 광화학 스모그를 일으키며 이로 인해 산성비를 생성하기도 한 다[1]. 질소산화물은 CO₂의 310 배에 해당하는 온실효과를 가 지고 있으며 또한 질소 산화물은 대기압 하에서 불활성으로 안정되어 150년 동안 대기에 잔류하는 것으로 알려져 있다[2]. 아산화질소(N₂O)는 유엔 기후변화 협약의 부속의정서인 교토 의정서(Kyoto Protocol)에서 규정된 6대 온실가스에 해당하는 이산화탄소(CO₂), 메탄(CH₄), 아산화질소(N₂O), 수소불화탄소 (HFCs), 과불화탄소(PFCs), 육불화황(SF₆) 중의 하나이기 때문 에 N₂O 제거는 필수적이다[2].

N2O를 저감하는 기술에는 촉매 분해법(catalytic decomposition), 열 분해법(thermal decomposition), 선택적 촉매 환원법(selective catalytic reduction, SCR) 및 동시저감 공정 등이 있다[3-6]. 그 중 선택적 촉매 환원법(SCR)은 N2O를 암모니아 환원제와 촉 매기반 하에 무해한 N2와 H2O로 전환하는 기술이다. 높은 탈질 효율을 나타내고, 유지보수 및 운전이 용이하다는 여러 장점으 로 인해 현재까지 개발된 기술 중 가장 대표적인 기술로서 세계 적으로 이미 상용화 되어 다양한 플랜트에서 가동되고 있다[7]. 촉매로는 vanadium과 zeolite 계열의 촉매가 가장 널리 사용되 고 있으며, 그 중 Fe 이온이 교환된 zeolite 촉매가 우수한 성능 을 가진 촉매로 많은 연구가 보고되어 있다[7,8]. Mauvezin et al. [9]은 MFI, FAU, BEA, MOR 등의 다양한 zeolite 담지체에 Fe를 이온교환 시킨 촉매들을 이용하여 분석을 수행하였고, 그중 Fe-BEA 촉매가 가장 우수한 N2O제거 성능을 나타냈다 고 보고하였으며 zeolite BEA에 스팀 처리 후 Fe를 이온교환 시켜 Fe-BEA 촉매를 제조할 경우 활성이 증가한다는 연구결 과를 발표했다. 하지만 스팀 처리가 Fe-BEA 촉매의 활성에 어떠한 영향을 주는 지에 대해서는 상세하게 연구되지 않고 있다.

본 연구에서는 스팀 처리된 Fe-BEA가 NH₃-SCR 반응에서 활성 증가에 작용하는 원인이 무엇인지 파악하고자 하였다. 따 라서 zeolite BEA를 사용하여 100 ℃에서 2 h 동안 스팀 처리 한 후 Fe를 이온교환시켜 Fe-BEA 촉매를 제조하였으며, 활성 테스트와 특성분석을 통해 스팀 처리된 Fe-BEA 촉매가 활성 증가에 미치는 원인을 비교 및 분석하였다.

2. 실험방법

2.1. 촉매제조

Fe-BEA 촉매는 zeolite BEA에 Fe를 이온교환하기 전에 스팀 처리 후 제조하였다. 외경 1 inch, 내경 0.87 inch 스테인레스 스틸관에 메쉬(mesh)로 된 망에 지지하여 10 g의 zeolite BEA 를 장입하였다. 반응기에 1 L min⁻¹의 N₂를 흘려주며 물 펌프 주입 라인을 히팅테이프로 가열하여 5%의 스팀을 흘려주어 100 ℃에서 2 h 동안 스팀 처리하였다. 스팀 처리된 zeolite BEA는 이온교환전, 2 L의 증류수를 이용하여 세척하였으며, 세척 후 80 ℃에서 12 h 동안 건조 시켜주었다. 건조된 zeolite BEA는 0.2 M 농도의 Fe(NO₃)₃·9H₂O 용액에서 용액의 온도를 80 ℃로 유지시켜주며 24 h 동안 교반하여 이온교환 시켜주었 다. 필터과정을 거쳐 하여 얻어진 침전물을 pH 7이 될 때까지 세척하고 100 ℃에서 12 h 동안 건조 시켜주었다. 건조하여 얻어진 파우더는 nitrate의 잔여물을 제거하기 위하여 600 ℃ 공기 분위기에서 5 h 동안 소성하였다. 100 ℃에서 스팀 처리 한 zeolite BEA는 zeolite BEA(100)으로 명명하였으며, zeolite BEA(100)를 Fe 이온교환한 촉매를 Fe-BEA(100)으로 명명하 였다.

2.2. NH₃-SCR 반응실험

NH₃-SCR반응 테스트는 고정층 반응기를 이용하였으며, 370 ~ 400 ℃의 온도범위에서 수행되었다. 입자는 펠렛 성형 후 분 쇄하여 체를 통해 150 ~ 300 µm 크기의 입자를 사용하였으며 1/4 inch 석영관에 quartz wool로 지지하여 0.05 g을 장입하였 다. 반응기체는 반응기의 상부에서 주입되어 하부로 배출되 어 휴대용 분석 장비로 주입되었다. 촉매 반응을 수행하기 전, 장입된 촉매에 N₂ 100 sccm을 흘려주며 상온에서 350 ℃ 까지 5 ℃ min⁻¹으로 승온시키며 전처리 하였다. 반응 가스는 3000 ppm N₂O와 3000 ppm NH₃를 사용하였으며, N₂ 99.99% 의 가스를 이용하여 N₂O 600 ppm, NH₃ 600 ppm으로 희석하 여 반응기에 공급하여 촉매 무게당 공간속도(weight hourly space velocity, WHSV)를 180 h⁻¹로 고정하였다. 반응기 후 단의 가스 조성은 휴대용 분석장비(N₂O gas analyzer, G200, Geotech)를 이용하여 분석하였다. N₂O의 전환율은 Equation (1)과 같이 계산하였다.

$$X(N_2 O) = \frac{[N_2 O]_{inlet} - [N_2 O]_{outlet}}{[N_2 O]_{inlet}} \times 100(\%)$$
(1)

2.3. 특성분석

촉매의 비표면적, 기공크기 및 기공부피는 BET (brunauer emmett teller, micromeritics ASAP 2010)를 사용하여 200 ℃에 서 4 h 동안 전처리 한 후, -196 ℃에서 질소 흡착 정도를 측정 하여 수행되었다. H2-TPR (temperature programmed reduction) 분석은 BEL CAT B (BEL Japan, Inc.) 장비를 이용하였으며, 10 vol.% H₂/Ar분위기로 상온에서 800 ℃까지 5 ℃ min⁻¹으로 승온 시키면서 촉매가 환원되는 정도를 측정하였다. 촉매의 산 점분석은 NH₃-TPD (temperature programmed desorption) 분석 은 BEL CAT B (BEL Japan, Inc.) 장비를 사용하여 분석되었 다. 촉매를 전처리하기 위하여 촉매가 주입된 셀을 5 ℃ min⁻¹ 으로 상온에서 600 ℃까지 승온시켰다. 전처리 과정이 종료된 후 600 ℃에서 TCD (thermal conductivity detector)가 안정화되 면 100 ℃로 온도를 낮추고 암모니아를 20 min 동안 흘려주며 촉매에 충분히 흡착될 수 있도록 하였다. 암모니아 흡착 후 He 을 흘려주며 촉매 표면에 물리 흡착된 암모니아를 제거하고 이후 촉매가 주입된 셀을 5 ℃ min⁻¹으로 750 ℃까지 승온시키 며 탈착되는 암모니아를 TCD를 사용하여 검출하였다. 촉매의 조성은 ICP-OES (inductively coupled plasma optical emission spectrometer, OPTIMA 8300DV, PerkinElmer)를 통해 분석되었 다. 촉매의 알루미늄의 화학적 결합상태를 알아보기 위하여 ²⁷Al MAS NMR (magic-angle-spinning nuclear magnetic resonance, 400 MHz 54 mm NMR DD2, Agilent) 분석이 수행되었다.

3. 결과 및 고찰

3.1. NH₃-SCR 반응실험

Figure 1에는 제조된 촉매들의 N₂O의 NH₃-SCR 반응을 통한 N₂O 전환율을 나타내었다. 370 ~ 390 ℃ 온도 영역에서 스팀 처리 한 Fe-BEA(100) 촉매가 큰 차이는 아니지만 비교적 높은 활성을 나타내는 것으로 확인되었다. 370 ℃에서는 반응성이 Fe-BEA 촉매와 Fe-BEA(100) 촉매의 반응성이 1% 정도 차이 났으며 380 ℃, 390 ℃에서는 Fe-BEA 촉매와 Fe-BEA(100) 촉 매의 반응성이 2% 정도 차이가 나는 것을 알 수 있었다. 본 NH₃-SCR 반응에서 비교적 큰 차이를 나타내지는 않았지만, 스 팀 처리에 의해 어떠한 영향으로 활성에서 차이를 나타내는지 확인하기 위하여 다양한 특성분석을 시도하였다.

3.2. 특성분석

Table 1에는 제조된 촉매의 BET 결과를 나타내었다. Zeolite

Table 1. BET analysis result of zeolite BEA and Fe-BEA catalysts

Figure 1. Comparison of the N₂O conversion performance of Fe-BEA catalysts.

Figure 2. H₂-TPR patterns of Fe-BEA catalysts.

BEA(100)의 표면적은 496 m² g⁻¹으로 zeolite BEA의 553 m² g⁻¹보다 표면적이 작아진 것을 알 수 있었으며 반면 zeolite BEA(100)의 기공 크기는 56 Å으로 zeolite BEA의 기공 크기 50 Å 보다 증가한 것을 알 수 있었다. 기공 부피는 큰 차이를 나타내지 않았다. Fe를 이온교환한 Fe-BEA 촉매의 표면적은 535 m² g⁻¹, Fe-BEA(100) 촉매는 531 m² g⁻¹으로 나타났으며 물 리적으로 특별한 경향은 나타나지 않는 것으로 여겨진다.

Fe의 환원되는 정도를 확인하기 위하여 H₂-TPR 분석을 수 행하였으며 그 결과를 Figure 2에 나타내었다. H₂ 분위기에서 온도를 증가시키며 첫 번째로 나타는 피크는 isolated Fe³⁺이 환 원되는 피크에 해당하며 두 번째 나타나는 피크는 Fe₂O₃가

Catalyst	Surface Area $(m^2 g^{-1})$	Pore Volume $(cm^3 g^{-1})$	Pore Diameter (Å)
zeolite BEA	553	0.69	50
zeolite BEA(100)	496	0.70	56
Fe-BEA	535	0.74	55
Fe-BEA(100)	531	0.74	55

Catalyst	Si [wt%]	Al [wt%]	Fe [wt%]	Si/Al mole ratio
zeolite BEA	17.45	2.91	-	5.76
zeolite BEA(100)	17.32	2.88	-	5.77
Fe-BEA	20.53	1.73	6.19	11.39
Fe-BEA(100)	21.56	1.80	5.97	11.50

Table 2. ICP analysis result of zeolite BEA and Fe-BEA catalysts

Figure 3. NH₃-TPD patterns of zeolite BEA and Fe-BEA catalysts.

Fe₃O₄로 환원되는 피크에 해당한다[8]. 스팀 처리된 Fe-BEA(100) 촉매는 약 395 ℃ 영역에서 첫 번째 피크를 나타내었으며, 464 ℃영역에서 두 번째 피크를 나타내었다. Zhang et al. [8]는 isolated Fe³⁺이 NH₃로 N₂O를 환원시키는 반응에서의 활성종으 로 isolated Fe³⁺이 많을수록 높은 활성을 나타낸다고 주장하였 다. 동일한 양의 샘플을 넣어 측정하였음에도 불구하고 Fe-BEA(100) 촉매가 전체적으로 isolated Fe³⁺과 Fe₂O₃을 더 많 이 보유하고 있어 많은 양의 환원이 일어나는 것을 알 수 있었 다. 높은 온도에서 나타난 세 번째 피크는 Fe₃O₄이 FeO로 환원 되는 피크로 Fe-BEA 촉매와 Fe-BEA(100) 촉매의 환원성 차이 에는 영향을 주지 않는 것으로 보고된다[10].

Table 2에는 촉매의 ICP 결과를 나타냈으며 Al, Si, Fe을 정 량적으로 분석하였다. Zeolite BEA의 Al 함량은 2.91 wt%, zeolite BEA(100)의 Al 함량은 2.88 wt%로 변화가 거의 없었지 만 Fe를 이온교환에 함에 따라 Al의 함량은 Fe-BEA 1.73 wt%, Fe-BEA(100) 1.80 wt%로 감소 한 것으로 보아 Fe를 이온교환 하였을 경우 탈알루미늄이 일어나는 것을 알 수 있었다.

촉매의 산점 분석을 위해 NH3-TPD 분석을 수행하였으며 그

Figure 4. ²⁷Al MAS NMR spectra of zeolite BEA and Fe-BEA catalysts.

결과를 Figure 3에 나타내었다. Maier et al. [11]은 앞쪽에 위치 한 피크가 Bronsted acid site로 약산점에 해당하며, 뒤에 위치 한 피크는 Lewis aicd site로 강산점에 해당한다고 보고하였다. Fe를 이온교환하기 전의 zeolite BEA와 zeolite BEA(100)의 산 점의 양이 많은 것으로 확인되며, Fe를 이온교환 후에는 산점 의 양이 강산점과 약산점에서 모두 줄어드는 것을 확인 할 수 있었다. 또한 Fe를 이온교환 한 촉매들은 약산점 피크에서 NH₃ 탈착 온도가 낮아진 것을 확인 할 수 있었다.

 Table 3에는 NH₃-TPD 그래프를 이용하여 산점의 양을 계산

 하여 나타내었다. Zeolite BEA의 총 산점의 양은 0.113 mmol

 g'로 나타났으며 zeolite BEA(100)은 0.106 mmol g'으로 총 산

 점이 다소 감소한 것을 알 수 있다. Fe를 이온교환을 함으로써

 총 산점의 양은 약 1/2배 정도 감소하였으며, Fe-BEA 촉매와

 Fe-BEA(100) 촉매의 총 산점의 차이는 거의 나타나지 않았다.

Figure 4에는 ²⁷Al MAS NMR 결과를 나타내었으며 Al 원자 주변의 구조적 변화를 확인하기 위하여 수행하였다. 40 ~ 65 ppm 부근의 피크는 4면체 Al에 해당하는 피크를 의미하며, 20

Table 3. Concentration of acid sites (mmol g⁻¹) in zeolite BEA and Fe-BEA catalysts

	· · · · · · · · · · · · · · · · · · ·	÷	
Catalyst	Total acid sites (mmol g ⁻¹)	Weak acid sites (mmol g^{-1})	Strong acid sites (mmol g ⁻¹)
zeolite BEA	0.113	0.051	0.062
zeolite BEA(100)	0.106	0.050	0.056
Fe-BEA	0.065	0.033	0.031
Fe-BEA(100)	0.060	0.029	0.031

○ T1-T2 site ● T3-T9 site

Figure 5. Location of the T-sites in the lattice of zeolite BEA.

ppm 부근의 피크는 8면체 Al에 해당하는 피크를 의미 한다 [11,12]. Zeolite BEA의 40 ~ 65 ppm 부근의 피크는 20 ppm 부 근의 피크보다 높은 것을 알 수 있는데 이는 4면체 Al이 8면체 Al보다 많은 것을 알 수 있으며, 4면체를 잘 이루고 있는 것을 확인 할 수 있다. Zeolite BEA와 zeolite BEA(100)의 피크의 세 기는 크게 차이나지 않는 것으로 확인된다. 그러나 Fe를 이온 교환한 Fe-BEA촉매와 Fe-BEA(100) 촉매의 4면체 Al에 해당하 는 피크 세기가 크게 감소 한 것으로 보여 이는 탈알루미늄에 의해 일어나는 것으로 판단된다[13,14].

Figure 5에는 zeolite BEA의 구조를 나타내었다[15]. Baran et al. [12]의 주장에 따르면 54 ppm은 T1, T2 사이트 이며 57 ppm은 T3-T9 사이트를 의미한다. Maier et al. [11]은 스팀 처 리가 T3-T9 사이트의 탈알루미늄을 일으키며 T1과 T2 사이트 의 탈알루미늄은 일어나지 않는다고 주장하였다. 또한 Maier et al. [11]은 스팀 처리 하였을 경우 T3-T9 사이트에서만 탈알 루미늄이 일어나는 것으로 보아 T1과 T2 사이트가 매우 안정 하다고 주장하였다.

4. 결 론

본 연구에서는 NH₃-SCR 반응에서 스팀 처리된 Fe-BEA 촉매가 활성에 미치는 영향을 조사하기 위하여 Fe-BEA 촉 매는 Fe를 이온교환하기 전, 5% 스팀으로 100 ℃에서 2 h 동 안 스팀 처리 되었다. NH₃-SCR 반응 테스트는 WHSV = 180 h⁻¹, 370 ~ 400 ℃에서 수행되었으며, 100 ℃에서 스팀 처리된 Fe-BEA(100) 촉매가 370 ~ 390 ℃에서 Fe-BEA 촉매보다 다소 높은 활성을 나타내었다. NH₃-SCR의 활성에 영향을 주는 원인 을 파악하기 위하여 제조된 촉매는 BET, ICP, NH₃-TPD, H₂-TPR, ²⁷AI MAS NMR을 통하여 특성분석 되었다. 비표면 적, 기공 부피 및 크기와 같은 물리적인 영향은 나타나지 않았 으며, ICP 결과를 통해 Fe 이온교환으로 인해 탈알루미늄이 일 어난 것을 확인하였고 ²⁷AI MAS NMR 분석을 통하여 4면체 알루미늄에서 탈알루미늄이 일어난 것을 보다 자세히 확인하 였다. H₂-TPR 결과를 통해 Fe-BEA(100) 촉매가 Fe-BEA 촉매 보다 isolated Fe³⁺의 환원이 더 많이 일어난 것을 확인하였으 며, 본 연구에서 활성이 크게 차이는 나지 않았지만 스팀 처리 로 인해 활성종인 isolated Fe³⁺의 양을 늘려주어 활성이 다소 증가하는 것으로 여겨진다.

감 사

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구 재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1009149).

References

- Rani, B., Singh, U., Chuhan, A. K., Sharma, D., and Maheshwari, R., "Photochemical Smog Pollution and Its Mitigation Measures," *J. Adv. Sci. Res.*, 2(4), 28-33 (2011).
- Chang, K. S., "Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide," *Appl. Chem. Eng.*, 19(1), 17-26 (2008).
- Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T., and Sigman, D. M., "Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of N₂O," *Anal. Chem.*, **79**(2), 599-607 (2007).
- Maniak, G., Stelmachowski, P., Stanek, J. J., Kotarba, A., and Sojka, Z., "Catalytic Properties in N₂O Decomposition of Mixed Cobalt-Iron Spinels," *Catal. Commun.*, **15**(1), 127-131 (2011).
- Yang, S., Xiong, S., Liao, Y., Xiao, X., Qi, F., Peng, Y., Fu, Y., Shan, W., and Li, J., "Mechanism of N₂O Formation During the Low-Temperature Selective Catalytic Reduction of NO with NH₃ over Mn-Fe Spinel," *Environ. Sci. Technol.*, 48(17), 10354-10362 (2014).
- Baek, J. H., Lee, S. M., Park, J. H., Jeong, J. M., Hwang, R. H., Ko, C. H., Jeon, S. G., and Yi, K. B., "Effects of Steam Introduction on Deactivation of Fe-BEA Catalyst in NH₃-SCR of N₂O and NO," *J. Ind. Eng. Chem.*, 48, 194-201 (2017).
- Kwon, D. W., and Hong, S. C., "Selective Catalytic Reduction (SCR) Technology Trends for the Nitrogen Oxide Removal of Exhaust Gas," *Korea Ind. Chem. News*, **19**(5), 12-24 (2016).
- Zhang, X., Shen, Q., He, C., Ma, C., Cheng, J., and Hao, Z., "N₂O Catalytic Reduction by NH₃ over Fe-Zeolites: Effective Removal and Active Site," *Catal. Commun.*, 18, 151-155 (2012).
- Mauvezin, M., Delahay, G., Kisslich, F., Coq, B., and Kieger, S., "Catalytic Reduction of N₂O by NH₃ in Presence of Oxygen Using Fe-Exchanged Zeolites," *Catal. Lett.*, 62(1), 41-44 (1999).
- Xia, Y., Zhan, W., Guo, Y., Guo, Y., and Lu, G., "Fe-Beta Zeolite for Selective Catalytic Reduction of NO_x with NH₃: Influence of Fe Content," *Chin. J. Catal.*, **37**(12), 2069-2078 (2016).

- Maier, S. M., Jentys, A., and Lercher, J. A., "Steaming of Zeolite BEA and Its Effect on Acidity: A Comparative NMR and IR Spectroscopic Study," *J. Phys. Chem. C*, **115**(16), 8005-8013 (2011).
- Baran, R., Millot, Y., Onfroy, T., Krafft, J. M., and Dzwigaj, S., "Influence of the Nitric Acid Treatment on Al Removal, Framework Composition and Acidity of BEA Zeolite Investigated by XRD, FTIR and NMR," *Micropor. Mesopor. Mat.*, 163, 122-130 (2012).
- Hajjar, R., Millot, Y., Man, P. P., Che, M., and Dzwigaj, S., "Two Kinds of Framework Al Sites Studied in BEA Zeolite by X-ray Diffraction, Fourier Transform Infrared Spectroscopy,

NMR Techniques, and V Probe," J. Phys. Chem. C, **112**(51), 20167-20175 (2008).

- 14. Van Bokhoven, J. A., Koningsberger, D. C., Kunkeler, P., Van Bekkum, H., and Kentgens, A. P. M., "Stepwise Dealumination of Zeolite β eta at Specific T-Sites Observed with ²⁷Al MAS and ²⁷Al MQ MAS NMR," *J. Am. Chem. Soc.*, **122**(51), 12842-12847 (2000).
- Li, J., Liu, H., An, T., Yue, Y., and Bao, X. "Carboxylic Acids to Butyl Esters over Dealuminated-Realuminated Beta Zeolites for Removing Organic Acids from Bio-Oils," *RSC Adv.*, 7(54), 33714-33725 (2017).