청정생산공정기술

DME 합성 및 분리공정에서 CO₂ 제거를 위한 Rectisol[®] 공정과 SelexoITM 및 Purisol[®] 공정 사이의 성능비교

노재현, 박회경, 김동선, 조정호*

공주대학교 화학공학과 충남 천안시 서북구 천안대로 1223-24 (부대동 275)

(2017년 7월 3일 접수; 2017년 7월 17일 수정본 접수; 2017년 7월 18일 채택)

Comparison of CO_2 Removal Capabilities among Rectisol[®], SelexolTM, and Purisol[®] Process for DME Synthesis and Separation Process

Jaehyun Noh, Hoey Kyung Park, Dongsun Kim, and Jungho Cho*

Department of Chemical Engineering, Kong Ju National University Chungnam Cheonan-si Subuk-gu Cheonan-daero 1223-24 (Budeadong 275)

(Received for review July 3, 2017; Revision received July 17, 2017; Accepted July 18, 2017)

요 약

Dimethyl Ether (DME) 합성 및 분리공정에서 8% 이상의 CO₂가 DME 합성반응기로 유입되면 DME 생산성이 저하되는 문 제가 발생된다. 따라서 본 연구에서는 DME 합성기로 유입되는 CO₂ 제거를 위한 방법으로 물리적 흡수제를 이용한 대표적 인 세 가지 공정에 대해 전산모사를 통해 에너지 소모량을 서로비교 하였다. 비교 대상으로 선정한 공정으로는 메탄올을 사 용하는 Rectisol[®] 공정, 폴리에틸렌글리콜 디메틸에테르(dimethyl ethers of polyethylene glycol, DEPG)를 사용하는 SelexoITM 공정 그리고 노말 메틸 피로리돈(n-methyl pyrrolidone, NMP)를 사용하는 Purisol[®] 공정으로 하였다. 각 공정에 대한 에너지 소모량을 비교해 본 결과 Rectisol[®] 공정 >> SelexoITM 공정 > Purisol[®] 공정 순으로 에너지가 많게 소모됨을 알 수 있었다. 그러므로 DME 제조공정에서 물리적 흡수제를 사용한 CO₂제거공정으로 가장 적합한 공정은 Purisol[®] 공정이라 판단된다.

주제어: CO2제거공정, 흡수 방법, 물리적 용매, DME 생산 공정, 유틸리티 소모량

Abstract : In the dimethyl ether (DME) synthesis and separation process, over 8% by mole of CO_2 is fed to the DME synthesis reactor which lowers DME productivity. Therefore, this work focused on the removal of CO_2 using three kinds of processes with physical absorbents by comparing the utility consumption through computer simulation of each process. Among the processes selected for comparison are Rectisol[®] process using methanol, Purisol[®] process using n-methyl pyrrolidone (NMP), and SelexoITM process using dimethyl ethers of polyethylene glycol (DEPG) as a solvent. As a result of this study, it was concluded that Purisol[®] process consumes the least energy followed by SelexoITM process. Therefore, it is considered that Purisol[®] process is the most suitable method to absorb CO_2 contained in the feed of DME synthesis reactor.

Keywords: CO2 removal process, Absorption method, Physical solvent, DME production process, Utility consumptions

1. 서 론

DME (Dimethylether, CH₃OCH)는 합성가스로부터 얻을 수 있는 화합물로서 가정용과 수송용 연료로 사용이 가능하다.

DME는 상온 상압에서 기체 상태로 존재하며, 상압에서는 영 하 25 ℃ 이하, 상온에서는 5기압 이상을 유지하면 액체 상태 가 된다. 또한 DME는 에테르 구조를 가지고 있어서 유기 화 합물에 대한 용해성이 있지만 금속에 대한 부식성이 없고 인

^{*} To whom correspondence should be addressed.

E-mail: jhcho@kongju.ac.kr; Tel: +82-41-521-9366; Fax: +82-41-554-2640

doi: 10.7464/ksct.2017.23.3.237 pISSN 1598-9712 eISSN 2288-0690

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licences/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

체에도 무해하며 환경적인 피해를 거의 주지 않는다. 특히 천 연가스나 원유, 메탄올, 나무와 같은 바이오매스 등 다양한 에너지원에서 얻을 수 있다[1].

DME는 LPG와 마찬가지로 상온에서 액화가 가능하고 증 기압도 프로판가스나 부탄가스의 중간수준이어서 LPG와 혼 합하여 사용할 수 있다. DME-LPG혼합 원료로 사용하는 경 우 DME는 LPG보다 20 ~ 30% 이상 저렴함으로 LPG만을 사 용하는 경우에 비해 판매단가를 줄일 수 있는 장점이 생긴다. 그리고 DME는 탄소-탄소결합이 없고 산소 함유율이 높기 때 문에 매연가스를 발생시키지 않고 분진 발생률도 적다. 최근 연구에 따르면 DME-LPG 혼합연료를 사용한 차량의 배출가 스와 연료소비효율은 LPG연료만을 사용한 경우와 유사한 수 준이라고 보고되었다[2].

한편, 국내에서는 DME를 석유대체연료로 규정하여 상용 화를 위한 제도를 마련 중이고 해외에서도 DME 연료에 대한 표준화 작업이 이루어지고 있다[3-7].

DME 생산공정은 Figure 1과 같이 크게 4개의 공정으로 구 성되어 있다. 첫 번째 공정은 천연가스로부터 합성가스를 제

조하는 천연가스 개질반응공정(tri-reforming process-100), 두 번째 공정은 CO₂를 제거하기 위한 CO₂제거공정(CO₂ removal process-200), 세 번째 공정은 DME 생산을 위한 DME 합성공정 (DME synthesis process-300), 마지막 네 번째 공정은 99.90% 이상의 고순도 DME를 얻기 위한 DME 정제 공정(DME purification process-400)이다.

천연가스 개질공정에서 생산된 합성가스(H₂, CO)에는 다량 의 CO₂가 포함되어 있다. 이러한 합성가스는 DME 합성 반응 기의 원료로 유입된다. 그런데 DME 합성 반응기로 유입된 원 료 중에 CO₂가 8.00 mol% 이상이 포함될 경우 DME 생산성 저하뿐만 아니라 그 다음 공정인 DME 분리공정에서 정상상 태를 벗어난 운전이 전개될 수 있다[8-10]. 따라서 천연가스 개질공정에서 생성된 합성가스 혼합물이 DME 합성반응기로 유입되기 전에 합성가스 혼합물에 포함된 CO₂는 99.00% 정 도 제거되어야 한다.

본 연구에서는 CO₂제거 공정에서 CO₂제거 방법으로 물리 적인 흡수제를 사용하는 세 가지 상용성 공정에 대한 에너지 소모량을 비교하였다. 첫 번째 공정은 메탄올을 사용하여 CO₂

Figure 1. DME commercial plant production process.

Figure 2. A schematic diagram for CO_2 capture process using aqueous methanol solution [11].

를 제거하는 Rectisol[®]공정이다. Rectisol[®]공정은 메탄올에 대 한 CO2의 높은 용해도를 이용하여 원료 중에 포함되어 있는 CO2를 용해시켜 제거하는 공정이다[11]. 메탄올은 다른 물리 적 흡수제에 비해 가장 저렴하고 수소에 대한 선택도가 낮아 서 합성가스 중에 CO2만을 제거하기 위한 용매로 유용하다 [12]. 또한 메탄올은 DME 합성 반응시 생성되는 부산물이므 로 생성되는 메탄올을 분리 및 정제하여 사용할 수 있다는 큰 이점이 있다. 이러한 이유로 한국가스공사(주)에 구축되어 있는 DME 데모플랜트(demo plant)에서는 CO2제거 용매로 메탄올이 사용된 바가 있다. Rectisol[®]공정은 기본적인 흡수 탑(T-101)과 탈거탑(T-102)구성되어 있다. 하지만 본 공정과 같이 원료 중에 물이 포함되어 있는 경우 메탄올 용매가 순환 됨에 따라 용매 중에 물의 양이 점점 증가하게 된다. 따라서 본 연구에서는 공정내의 물을 조절하기 위해서 메탄올과 물 분리탑인 메탄올 용매 재생탑(T-103)을 추가적으로 사용하였 다. Figure 2에는 이러한 공정도를 나타내었다.

두 번째로 노말 메틸 피로리돈(n-methyl pyrrolidone, NMP)

을 이용하여 CO₂를 제거하는 Purisol[®]공정이다. NMP는 메탄 올과 같이 CO₂에 대한 용해도가 크면서 메탄올 용매에 비해 휘발성이 낮아 CO₂와 상대휘발도 차이가 크게 난다. 따라서 단순한 감압을 통해서도 용매의 손실 없이 CO₂를 쉽게 분리 해낼 수 있다. Figure 3에는 다단 감압드럼을 통해 CO₂를 제 거하는 전형적인 Purisol[®] 공정을 나타내었다[13].

Figure 3을 보면 원료는 흡수탑 하부(스트림 1번)로 유입되고 NMP 용매는 프로판 냉동사이클(E-204)에 의해서 저온으로 냉각된 후 흡수탑 상부(스트림 2번)로 주입된다. 흡수탑 하부(스트림 4번)로 유출되는 NMP용매는 3개의 감압드럼(D-201~203)을 거치면서 CO₂가 탈거된다. 용매 보충 설비(make-up, 스트림 17번)에서는 운전 중에 손실된 양만큼의 NMP 수용액을 공정 내에 다시 보충해 준다. 여기서 보충하는 NMP 용매의 양은 운전 중에 흡수탑(T-201) 상부 스트림(스트림 3 번)과 감압드럼 상부 스트림(스트림 6, 11, 14번)에서 손실되는 물과 NMP 양만큼이 보충 된다. 이 공정의 경우 단순히 3단 감압을 통해 CO₂를 탈거시키므로 탈거탑이 필요 없고 용매

T-201	: CO ₂ absorption tower
D-201	: high press. flash drum
D-202	: low press. flash drum
D-203	: vacuum press. flash drum
E-204	: C ₃ refrigerator
P-202	: solvent feeding pump
1	: CO ₂ mixture feed
6,11,14	: CO ₂ gas
17	: NMP aq. make-up
21	: CO ₂ gas
3	: treat gas
C-201	: compressor

Figure 3. A schematic diagram for CO₂ removal process using aqueous NMP solution [12].

Figure 4. A schematic diagram for the CO₂ removal process using aqueous DEPG solution (using air stripper).

재생탑도 사용되지 않기 때문에 메탄올을 이용한 CO₂제거 공정에 비해 공정의 규모가 작다.

세 번째로는 폴리에틸렌글리콜 디메틸에테르(dimethyl ethers of polyethylene glycol, DEPG)를 사용하여 CO₂를 제거하는 SelexolTM공정이다[14]. DEPG는 폴리에틸렌글리콜과 디메 틸에테르의 혼합물로써 메탄올과 같이 CO₂에 대한 용해도가 크면서 용매의 휘발성이 낮아 CO₂와의 상대휘발도 차이가 크게 난다. 따라서 NMP용매를 사용하는 Purisol[®] 공정과 마 찬가지로 감압을 통해 CO₂를 쉽게 분리해낼 수가 있다. 하지 만 DEPG의 경우 물과 공비점을 형성하고 있기 때문에, 본 공정과 같이 원료 중에 물이 포함되어 있는 경우 감압만으로 는 공정외부로 물을 배출시키기가 어렵다는 단점이 있다. 따 라서 본 연구에서는 원료 중에 포함되어 있는 물의 양만큼을 공정외부로 배출하고 용매에 잔존하고 있는 CO₂를 대부분 탈거시키기 위해서 160 kPa의 압축공기(air)를 활용한 air stripper를 사용하였다. SelexolTM공정의 공정 구성도는 Figure 4 에 나타내었다.

본 연구에서는 앞서 언급한 세 가지 공정을 대상으로 올바 른 열역학 모델식을 선정하고 상용성 화학공정 모사기를 사 용하여 공정모사를 수행하였다. 그리고 에너지 소모량 비교 를 통해서 DME 생산 공정에서 CO₂ 제거 공정으로 가장 적합 한 공정을 선정하고자 한다.

2. 이 론

CO₂ 흡수제로 메탄올을 사용하는 Rectisol[®] 공정과 NMP를 사용하는 Purisol[®] 공정을 모사하기 위해서 액상과 기상에 대 해서 각각 다른 열역학 모델식을 사용하였다. 액상에 대해서 는 액상의 비이상성을 해석하기 위해 액체 활동도계수 모델 식을 사용하였으며, 기상에 대해서는 기상의 비이상성을 해 석하기 위해 상태방정식 모델식을 사용하였다. 이러한 모델 식은 다음의 Equation (1)과 같이 나타낼 수 있다.

$$\widehat{\phi}_{i}^{v}(T,P,y_{i})y_{i}P = \gamma_{i}(T,P,x_{i})x_{i}H_{i}$$

$$(1)$$

액상에서 물과 메탄올 또는 물과 NMP 사이의 비이상성을 해석하기 위해 Renon과 Prausnitz 등이 제안한 NRTL (non random two liquid) 액체 활동도계수 모델식을 사용하였다[15]. NRTL 액체 활동도계수 모델식은 다음의 Equation (2)에서부 터 (4)까지 표현된다. Table 1에는 화학공정모사기 중에 하나

 Table 1. NRTL BIP(binary interaction parameters) for each binary pair used in PRO/II version 9.4

i	j	$egin{array}{c} a_{ij} \ a_{ji} \end{array}$	$egin{array}{l} b_{ij}/T \ b_{ji}/T \end{array}$	α_{ij}
H ₂ O	CH ₃ OH	0.5111 0.7361	199.8540 -360.6920	0.2442
H ₂ O	NMP	0.0000 0.0000	-120.5810 288.7620	0.3055

인 PRO/II version 9.4에 내장되어 있는 물과 메탄올 그리고 물과 NMP 성분들 간의 NRTL 이성분계 상호작용 매개변수 를 나타내었다.

$$\ln \gamma_i = \frac{\sum_j \tau_{ji} G_{ji} x_j}{\sum_k G_{ki} x_k} + \sum_j \frac{x_j G_{ij}}{\sum_k G_{kj} x_k} \left(\tau_{ij} - \frac{\sum_k x_k \tau_{kj} G_{kj}}{\sum_k G_{kj} x_k} \right) \quad (2)$$

$$\tau_{ij} = a_{ij} + \frac{b_{ij}}{T} \tag{3}$$

$$G_{ij} = \exp\left(-\alpha_{ij}\tau_{ij}\right) \tag{4}$$

여기에서 a_{ij}, b_{ij} 및 α_{ij} 는 NRTL 모델식의 이성분계 상호작용 매개변수이다.

또한 Henry의 법칙을 함께 사용하였다. 이것은 운전온도에 서 초임계상태인 가스(non-condensible supercritical gas)성분 들의 용매에 대한 용해도를 추산하기 위한 것으로 표현식은 다음의 Equation (5)와 같다.

$$\ln H_{i,j} = C_1 + \frac{C_2}{T} + C_3 \ln T + C_4 P$$
(5)

C₁에서 C₄는 Henry 상수(kPa⁻¹)계산을 위한 계수들이며, 온도
 및 압력 의존항이 포함된 상관관계식을 통해 용질의 용매에
 대한 용해도를 추산하였다. Table 2에는 각각의 용질의 용매

Table 2. Henry constants

Solute	Solvent	C_1	C_2	C_3	C_1
N ₂	H ₂ O	158.26	-7260.14	-20.70	1.44E-06
N_2	CH ₃ OH	27.76	-598.88	-2.27	0.00
N ₂	NMP	-89.29	4622.20	15.48	0.00
CH ₄	H ₂ O	169.89	-8132.23	-22.36	1.44E-06
CH ₄	CH ₃ OH	-63.15	2617.00	11.52	0.00
CH ₄	NMP	10.83	-3.25	0.12	0.00
CO ₂	H ₂ O	154.95	-8498.72	-20.08	7.30E-06
CO ₂	CH ₃ OH	217.03	-10620.00	-30.14	0.00
CO ₂	NMP	18.82	-1859.90	-0.66	0.00
H ₂	H ₂ O	116.41	-4881.32	-14.79	3.55E-06
H ₂	CH ₃ OH	15.56	271.33	-0.55	0.00
H_{2}	NMP	10.80	784.69	0.00	0.00
СО	H ₂ O	166.67	-7847.16	-21.90	9.87E-07
СО	CH ₃ OH	6.03	1144.40	0.00	0.00
СО	NMP	81.29	-2830.97	-10.40	0.00

에 대한 Henry 상수들을 나타내었다.

또한 기상에 대해서는 Soave-Redlich-Kwong (SRK) 상태방 정식을 적용하였다[16]. 본 연구에서 사용한 SRK 상태방정식 표현식은 Equation (6)에서부터 (10)까지에 나타내었다.

$$P = \frac{RT}{v-b} - \frac{a_c \alpha}{v(v+b)} \tag{6}$$

$$a = \sum_{i} \sum_{j} x_i x_j a_{ij} \tag{7}$$

$$b = \sum_{i} x_i b_i \tag{8}$$

$$a_i = 0.42747 \frac{R^2 T_{ci}^2}{P_{ci}} \tag{9}$$

$$b_i = 0.08664 \frac{RT_{ci}}{P_{ci}}$$
(10)

한편, Equation (6)에서 α는 alpha function으로써 각 순수성 분의 증기압을 잘 추산하기 위해 사용되는 값이며 다음의 Equation (11)과 (12)같이 표현된다.

$$\alpha = \left[1 + m\left(1 - \sqrt{T_r}\right)\right]^2 \tag{11}$$

$$m = 0.37464 + 1.54336\omega - 0.26992\omega^2 \tag{12}$$

Equation (11)을 보면 alpha function은 각 성분의 환산온도 (*T_r*)와 편심인자(*w*)의 함수로 표현되며, Equation (12)에 나타 낸 편심인자 앞의 계수들은 제한된 종류의 탄화수소 성분들 의 온도에 따른 증기압 실험 데이터를 모두 모아 회귀분석을 통해서 결정한 값이다. 따라서 탄화수소 성분이 아닌 다른 성 분들의 증기압 추산결과에는 오차율을 보인다. 이러한 단점 을 보완하기 위해서 각 순수성분의 증기압 실험 데이터를 회 귀분석 하여 성분마다 서로 다른 계수를 결정하는 새로운 alpha function을 사용하였다[17]. 이는 Equation (13)에 나타 내었다. Equation (13)에서 L, M과 N은 각 순수성분의 온도에 따른 증기압을 잘 추산하기 위한 계수들이며, 각 성분마다 고 유한 값을 갖는다. Table 3에는 본 연구에서 다루는 주요 성분 들에 대해서 PRO/II에 내장되어 있는 alpha function 앞의 계 수인 L, M과 N값을 나타내었다.

$$\alpha = T_r^{N(M-1)} \exp\left[L\left(1 - T_r^{MN}\right)\right] \tag{13}$$

한편, DEPG 물리적 흡수제를 사용하는 SelexolTM공정 계 산을 위해서 Aspen Tech사의 Aspen Plus version 8.8전산모사 기와 PC-SAFT 상태방정식을 사용하였다. PC-SAFT 상태방

 Table 3. The coefficients for the new alpha function in equation (13)

Component	L	M	N
N ₂	0.1523	0.8945	2.3404
CH ₄	0.5144	0.9903	1.0000
CO ₂	1.2341	1.3268	0.6499
H ₂	1.2528	13.2690	0.0400
СО	0.2079	0.8607	1.7188
H ₂ O	0.3569	0.8743	2.4807
CH ₃ OH	0.6797	0.9097	1.9996
NMP	0.5843	0.9092	2.0064

정식은 열역학적 섭동이론(theory of perturbation)을 기초로하 여 Huang와 Radosz [18,19]가 개발한 statistical associating fluid theory (SAFT) 모델식에서 분산(dispersion)항을 수정한 모델식이다[20,21]. PC-SAFT 상태방정식은 Equation (14)에서 부터 (18)까지에 표현한 것과 같이 강체구(hard sphere, \tilde{A}^{hs}) 항, 분산(dispersion, \tilde{A}^{disp})항, 사슬(chain, \tilde{A}^{chain})항 그리고 회 합(association, \tilde{A}^{assoc})항에 대해서 기여하는 정도를 residual helmholtz 자유에너지로 표현한다. 그리고 이를 바탕으로 기 상과 액상의 퓨개시티 계수와 계의 압축인자와 같은 열역학 적 특성을 계산함으로써 물리적 흡수제와 CO₂간의 흡수특성 을 예측하게 된다.

$$\widetilde{A}^{res} = \widetilde{A}^{hs} + \widetilde{A}^{disp} + \widetilde{A}^{chain} + \widetilde{A}^{assoc}$$
(14)

$$\frac{\tilde{A}^{hs}}{NkT} = \frac{6}{\pi\rho} \left[\frac{(\zeta_2)^3 + 3\zeta_1\zeta_2\zeta_3 - 3\zeta_1\zeta_2(\zeta_3)^2}{\zeta_3(1-\zeta_3)^2} - \left[\zeta_3 - \frac{(\zeta_2)^3}{(\zeta_3)^2} \right] \ln(1-\zeta_3) \right]$$
(15)

$$\frac{\widetilde{A}^{disp}}{NkT} = -2\pi\rho I_1(\eta, \overline{m}) \sum_i \sum_j x_i x_j m_i m_j \left(\frac{\epsilon_{ij}}{kT}\right) \sigma_{ij}^3 \qquad (16)$$
$$-\pi\rho \overline{m} C_1 I_2(\eta, \overline{m}) \sum_i \sum_j x_i x_j m_i m_j \left(\frac{\epsilon_{ij}}{kT}\right)^2 \sigma_{ij}^3$$

$$\frac{\widetilde{A}^{chain}}{NkT} = \sum_{i} x_i (1 - m_i) \ln g_{ii}^{hs}(d_{ii})$$
(17)

$$\frac{\tilde{A}^{assoc}}{NkT} = \sum_{i} x_i \left[\sum_{A_i} \left(\ln X^{A_i} - \frac{X^{A_i}}{2} \right) + \frac{M_i}{2} \right]$$
(18)

이러한 모델식을 활용하기 위해서는 각 순수성분들에 대해 서 segment energy parameter (ϵ/k), segment size parameter (σ), segment number parameter (m) 등 3개 이상의 매개변수 가 필요하다. Table 4에는 Aspen Plus version 8.8에 내장되어 있는 각 순수성분들에 대해 ϵ/k , σ , m를 나타내었으며, 물과 DEPG에 대해서는 association energy (ϵ^{A,B_j})와 association volume (k^{A,B_j})값을 추가적으로 나타내었다.

	0.0				
Comp.	ϵ/k (K)	σ	m	$\epsilon^{A_i B_j}$ (K)	$k^{A_i B_j}$
CH ₄	150.0300	3.7039	1.0000	-	-
CO_2	152.1010	2.5637	2.5692	-	-
H_2	12.5276	2.9729	0.8285	-	-
CO	93.0380	3.2829	1.2751	-	-
H_2O	234.0640	2.8323	2.6894	3,264.41	0.0602
DEPG	169.758	3.0951	11.6050	2,500.00	0.2255

Table 4. PC-SAFT model pure parameters in Aspen Plus version

 8.8

Table 5. Binary interaction parameter kij for PC-SAFT equation ofstate model in Aspen Plus version 8.8

Component i	Component j	A_{ij}	B_{ij}	C_{ij}	Т
N_2	DEPG	2.51587	-2.25060	0.00000	Κ
CO ₂	DEPG	0.21893	-0.17101	0.00000	K
CH ₄	DEPG	1.63940	-1.45670	0.00000	K
H ₂	DEPG	12.15750	-11.64010	0.00000	K
СО	DEPG	0.21890	-0.17100	0.00000	K
H ₂ O	DEPG	-1.12258	1.02445	0.00000	K
CO ₂	H ₂ O	0.09364	-0.18361	0.00000	K
CH ₄	H ₂ O	0.30366	-0.49743	0.00000	K
H ₂	H ₂ O	-0.02327	-1.05169	0.00000	K
СО	H ₂ O	0.17356	-0.47734	0.00000	K

한편, 혼합물에서 화학성분이 다른 i성분과 j성분 간에 size parameter (σ_{ij})와 energy parameter (ϵ_{ij})는 Equation (19)와 (20) 과 같은 결합법칙(mixing rule)을 통해 계산된다. 여기서 k_{ij} 는 온도에 따른 i성분과 j성분 간에 기액 상평형 실험 데이터를 회귀분석을 통해 결정되는 이성분계 상호작용 매개변수(binary interaction parameter, BIP)이다.

$$\sigma_{ij} = \frac{1}{2} (\sigma_{ii} + \sigma_{jj}) \tag{19}$$

$$\epsilon_{ij} = \sqrt{\epsilon_{ii}\epsilon_{jj}}(1-k_{ij}) \tag{20}$$

Table 5에는 Aspen Plus version 8.8에 내장되어 있는 이성 분계 상호작용 매개변수는 나타내었다. Aspen Plus내에서는 BIP를 온도에 따른 함수로써 Equation (21)과 같은 다항식을 통해 계산된다.

$$k_{ij} = a_{ij} + b_{ij}/T_r + c_{ij} \ln T + d_{ij}T_r + e_{ij}T_r^2$$
(21)

3. 전산 모사

본 연구에서 Rectisol[®] 공정과 Purisol[®] 공정은 SIMSCI사의 PRO/II PROVISION version 9.4를 사용하여 모사하였으며, SelexolTM 공정은 Aspen Tech사의 Aspen Plus version 8.8로

Component	kmol h ⁻¹	mole%
N ₂	0.1	0.12
CH_4	0.8	1.03
CO_2	11.1	13.96
H_2	35.3	44.20
СО	32.3	40.50
H ₂ O	0.2	0.19
Total flow (kmol h ⁻¹)	79.8	100.00
Temperature ($^{\circ}$ C)	30	°C
Pressure (kPa)	6,00	0.00

Table 6. Feed stream information

공정모사 하였다. SelexoITM 공정모사를 위해 Aspen Plus 프 로그램을 사용한 이유는 DEPG 용매에 대한 물성과 CO2를 포함한 원료 가스들 간에 이성분계 상호작용 매개변수가 모 두 내장되어 있고 SelexoITM공정에 대한 예시 파일도 함께 제공해주기 때문이다.

Table 6에는 한국가스공사에서 10 ton day⁻¹ DME 생산기준의 데모플랜트(demo plant)에서 천연가스 개질공정으로부터 CO₂ 제거 공정으로 유입되는 원료 유량 및 조성을 나타내었다. 유 입되는 원료의 총 유량은 시간당 79.8 kmol이며, 이중에서 CO₂는 약 13.96 mol% 정도가 포함되어 있다. 그리고 일산화 탄소와 수소의 유량은 거의 1:1 비율로 유입된다.

3.1. 메탄올 용매를 이용한 Rectisol[®] 공정

Figure 2의 공정도에 의하면 CO₂를 포함한 Table 6의 원료 가스는 흡수탑(T-101) 하부로 주입되고 메탄올 용매는 프로 판 냉동사이클(E-101)에 의해서 냉각된 후 흡수탑 상부로 주 입된다. 흡수탑에서는 메탄올 용매와 원료가스가 서로 향류 로 접촉하면서 합성가스 중에 함유되어 있는 CO₂를 메탄올 용매가 선택적으로 흡수하여 탑하부로 이송한다. 본 연구에서 는 흡수탑 상부로 주입하는 메탄올 용매의 농도를 상업용 농 도에 해당하는 99.00 wt%으로 결정하였으며, 주입온도는 영 하 20.00 ℃로 결정하였다. 그리고 흡수탑(T-101) 운전 압력은 원료 압력보다 200.00 kPa이 낮은 5,800.00 kPa로 결정하였으 며, 흡수탑의 이론단수는 일반적인 흡수탑 단수로써 적절한 6단으로 선정하였다. 한편 흡수탑에서 변화시킬 수 있는 조 절변수로는 메탄올 용매의 순환유량인데 이는 CO₂를 흡수탑 하부로 원료대비 99.00% 제거 하는 유량으로 결정하였다.

흡수탑 하부로 나가는(스트림 4번) CO₂가 다량 포함된 용매 (CO₂ rich solvent)는 열교환된 후 CO₂ 탈거탑(CO₂ stripper, T-102)의 중간으로 주입된다. 탈거탑에서는 탈거탑의 운전압력 과 원료 주입단에 따라서 설계비용과 운전비용이 다르게 결 정될 수 있다. 본 연구에서는 탈거탑 상부의 운전압력을 응축 기(condenser)에서 냉매로 냉각수(cooling water)사용이 가능하 도록 12.00 bar로 결정하였으며, 원료 주입단은 재비기(reboiler)의 에너지 소모량(heat duty)을 최소화시키는 주입단으로

Figure 5. Rectisol[®] process (PRO/II ver.9.4).

	CO ₂	CO ₂	MeOH solvent
Column	absorber	stripper	recovery co-
	(T-101)	(T-102)	lumn (T-103)
Solvent feeding rate to absorber $(kg h^{-1})$	4,029.52	-	-
CO ₂ removal ratio (%)	99.00 ^{a)}	99.99 ^{b)}	-
Reflux ratio	-	0.33	0.39
Reflux molar rate (kmole h ⁻¹)	-	8.01	48.57
Feed stage location	1,6	6	8
Condenser duty (Gcal h ⁻¹)	-	-0.0876	-1.5266
Cooling water consumption (ton h^{-1}) (supply / return temp. = 32/40 °C)	-	10.95	190.82
Reboiler duty (Gcal h ⁻¹)	-	0.2597	1.4275
MP steam consumption (kg h^{-1}) (175.00 °C saturated steam)	-	535.03	2,940.87
Solvent feeding pump (P-101) power consumption $(\eta=0.60)$ (kW)			15.78

Table 7. Simulation results summary of Rectisol[®] process

^{a)} (amount of removed CO₂ at CO₂ absorber bottom/amount of CO₂ in feed gas at CO₂ absorber) \times 100%

^{b)} (amount of removed CO₂ at CO₂ stripper top/amount of CO₂ in feed gas at CO₂ stripper) \times 100%

결정하였다. 그리고 탈거탑의 총 이론단수는 응축기와 재비 기를 포함하여 12단으로 결정하였으며 제 1단이 응축기에 해 당하고 제 12단이 재비기에 해당한다.

한편, 메탄올 용매 재생탑에서는 주입된 원료 중에 포함된 메탄올 성분은 99.99% 이상 탑 상부(스트림 13번)로 회수되 도록 하였으며, 물은 탑하부(스트림 12번)로 80.00% 정도 회 수 되도록 하여 흡수탑의 원료 중에 포함되어 있던 물의 양보 다는 약간 많은 양의 물이 배출되도록 조절하였다. 이렇게 차 이 나는 물의 양은 용매보충설비(make-up, 스트림 17번)를 통 해 메탄올과 함께 보충해 줌으로써 용매 순환 사이클을 완성 하였다. Figure 5에는 상기에서와 같은 운전 조건으로 PRO/II 를 사용해 Rectisol[®] 공정을 모사한 화면을 나타내었다. 그리 고 전산모사 결과는 Table 7에 나타내었다. Table 7을 보면 흡수탑과 탈거탑의 응축기에서 소요되는 총 냉각수 유량은 201.77 ton h⁻¹이고 재비기의 사용되는 MP (medium pressure, 175.00 ℃ saturated steam)스팀의 총 유량은 3,475.90 kg h⁻¹이다. 그리 고 메탄올 용매 재생탑 상부에서 압력이 낮아진 메탄올 용매 의 압력을 높이기 위한 펌프의 소요 동력은 효율을 60.00%로 가정했을 때 약 15.78 kW가 되었다.

한편, CO₂ 흡수탑(CO₂ absorber)으로 주입하는 99.00 wt% 의 메탄올 용매의 주입온도를 영하 20.00 ℃로 낮추기 위해서 는 냉동 사이클이 필요하다. 냉동 사이클에 대한 개념도는 Figure 6에 나타내었다. Figure 6를 보면 냉매 가스는 압축기를 통해 고압으로 압축되어진 후 냉각수를 냉매로 사용하는 응축기에 의해서 45.00 ℃까지 냉각 및 응축되어진다. 이때 압축기 후 단의 압력은 45.00 ℃에서 프로판의 기포점 압력(1,536.00 kPa)

Figure 6. A schematic diagram for refrigeration cycle.

Step	Item	Result
1	Evaporator heat duty (Gcal h^{-1})	0.0974
2	Compressor discharge pressure (kPa)	1,600.00
3	J-T expansion valve outlet pressure (kPa)	130.00
4	Refrigerant temp. at expansion valve outlet ($^{\circ}C$)	-36.29
5	Total refrigerant circulation rate (kg/h)	1,862.67
6	Compressor power consumption, (n=0.70) (kW)	86.64
7	Condenser heat duty (Gcal h^{-1})	0.1745
8	Cooling water consumption (ton h^{-1}) (supply / return temp. = $32/40$ °C)	21.81

Table 8. Simulation results for refrigeration cycle

보다 약간 높은 1,600.00 kPa로 유지되게 함으로써 응축기 후 단에서 충분이 액화되도록 하였다. 그리고 응축기 후단의 액 화된 냉매는 줄-톰슨(Joule-Thomson)팽창 밸브에서 단열 팽 창을 통해 저온으로 떨어지게 된다. 본 연구에서는 팽창압력 을 외부 공기의 유입을 방지하기 위해 상압보다 약간 높은 130.00 kPa로 설정하였다. 한편, 냉매는 130.00 kPa까지 줄-톰 슨 팽창 후에 액상과 기상이 함께 존재하게 되는데, 기-액 분 리기에 의해서 기상은 압축기 전단으로 보내고 액상류만을 증발기로 보내서 프로판의 증발잠열을 활용한 냉동 효과를 얻을 수 있도록 하였다. Table 8에는 본 공정에서 필요한 냉동 사이클의 운전조건과 결과에 대해서 요약해 놓았다.

3.2. NMP 용매를 이용한 Purisol[®] 공정

Figure 3의 공정도에 의하면 CO₂를 포함한 원료가스(스트 림 1번)는 흡수탑 하부로 주입되고 NMP 용매는 프로판 냉동 사이클(E-202)에 의해서 냉각된 후 흡수탑 상부(스트림 2번) 로 주입된다. 이때 용매의 주입온도는 NMP의 어는점(영하 24.00 ℃)보다 14.00 ℃ 정도 높은 영하 10.00 ℃로 결정하였으 며, 흡수탑의 운전 압력은 원료 압력보다 200.00 kPa이 낮은 5,800.00 kPa로 결정하였다. 흡수탑의 이론단수는 일반적인 흡수탑 단수로써 적절한 6단으로 선정하였다. 그리고 NMP 용매의 주입유량은 CO₂를 흡수탑하부로 원료대비 99.00% 제 거 하는 유량으로 결정하였다. 흡수탑 하부로 유출되는 CO₂ 가 다량 포함된 용매(CO₂ rich solvent, 스트립 4번)는 3기의 감압드럼(D-201~203)과 중간에 60.00 ℃까지 가열시키는 가 열기(heater, E-201)를 통해 흡수탑 하부(스트림 4번)에서 NMP용매에 녹아 있던 CO₂를 98.80% 정도 탈거시키게 된다. 이때 세 번째 드럼(D-203)의 진공압력은 20.00 kPa 정도가 된 다. Figure 7에는 PRO/II를 사용해 Purisol[®] 공정을 모사한 화 면을 나타내었으며, 전산모사 결과는 Table 9에 나타내었다. Table 9를 보면 흡수탑 상부에서 CO₂의 제거율은 원료대비 99.00%가 되는 것을 볼 수 있으며 이때 필요한 용매의 유량

Table 9. Purisol[®] process simulation results

Column	CO ₂ absorber (T-201)
Solvent feeding rate to absorber (kg h^{-1})	9,410.47
CO ₂ removal ratio (%)	99.00
Reflux ratio	-
Reflux molar rate (kmole h ⁻¹)	-
Feed stage location	1, 6
C-201 compressor power consumption (kW)	4.6288
E-201 heater heat duty (Gcal h^{-1})	0.1195
Steam consumption at E-201 heater (kg h^{-1}) (175.00 °C saturated steam)	246.09
Solvent feeding pump power consumption (n=0.60) (kW)	25.69

Figure 7. A schematic diagram for the CO₂ capture process using aqueous NMP solution (using PRO/II ver.9.4).

Step	Item	Result
1	Evaporator heat duty (Gcal h ⁻¹)	0.1661
2	Compressor discharge pressure (kPa)	1,600.00
3	J-T expansion valve outlet pressure (kPa)	130.00
4	Refrigerant temp. at expansion valve outlet (°C)	-36.27
5	Total refrigerant circulation rate (kg h ⁻¹)	3,308.18
6	Compressor power consumption, (n=0.7) (kW)	164.67
7	Condenser heat duty (Gcal h^{-1})	0.3077
8	Cooling water consumption (ton h^{-1}) (supply / return temp. = 32/40 °C)	30.77

Table 10. Computer simulation results for refrigeration cycle of ${\rm Purisol}^{\mathbb{R}} \mbox{ process}$

은 9,410.47 kg h⁻¹가 되는 것을 볼 수 있다. 한편 CO₂ 탈거를 돕기 위해 필요한 가열기의 heat duty는 0.1195 Gcal h⁻¹가 되 며 CO₂를 재 압축하기 위해 필요한 압축기(C-201)의 소요동 력은 4.63 kW 정도가 된다.

한편, Purisol[®] 공정에서 냉동사이클의 구성은 Rectisol[®] 공 정의 냉동사이클 구성과 동일하다. Table 10에는 본 공정에서 필요한 냉동 사이클의 운전조건과 결과에 대해서 요약해 놓았 다. Table 10을 보면 99.00 wt%의 NMP용매의 공급온도를 영하 10.00 ℃로 낮추기 위해 필요한 프로판 냉매의 총 순환유량은 3,308.18 kg h¹가 되며, 프로판 증기 재압축을 위해 필요한 압축 기 소요동력은 효율 70.00%를 감안했을 때 164.67 kW가 된다. 그리고 재 압축된 고온의 프로판 증기를 액상으로 응축시키기 위해 필요한 냉각수 소모량은 30.77 ton h⁻¹ 정도가 된다.

3.3. DEPG 용매를 이용한 SelexoITM 공정

Figure 4에서 흡수탑 상부(스트림 2번)로 유입되는 DEPG 용 매의 순도는 상업용 순도인 99.00 wt%로 결정하였으며, 용매 의 공급온도는 Rectisol[®] 공정의 경우와 마찬가지로 영하 20.00 ℃로 정하였다. 그리고 DEPG의 총 용매 순환유량은 CO2를 흡수 탑 하부(스트림 4번)로 원료대비 99.00% 제거하는 유량으로 결정하였다. 또한 흡수탑 운전 압력은 원료 압력보다 200.00 kPa이 낮은 5,800.00 kPa로 결정하였으며, 흡수탑의 이론단수 는 일반적인 흡수탑 단수로써 적절한 6단으로 선정하였다.

흡수탑 하부로 나가는 용매(CO₂ rich solvent, 스트림 4번)는 2기의 감압드럼과 중간에 60.00 ℃까지 가열시키는 가열기 (E-301)를 통해 DEPG용매에 녹아 있던 CO₂를 94.17% 정도 탈거시킨다. 그리고 air stripper (T-302) 상단(스트림 13번)으 로 주입되어 맨 아랫단(스트림 15번)에서 주입되는 80 ℃ 정 도의 160.00 kPa 압축공기로 인해 소량의 물과 함께 DEPG용 매에 녹아 있던 나머지 CO₂는 99.99% 이상 대부분 탈거탑 상 부(스트림 17번)로 제거되게 된다.

Figure 8에는 Aspen Plus를 사용해서 SelexolTM 공정을 모 사한 화면을 나타내었으며, 전산모사 결과는 Table 11에 나타

Column	CO ₂ absorber (T-201)
Solvent feeding rate to absorber (kg h^{-1})	14,339.00
CO ₂ removal ratio (%)	99.00
Reflux ratio	-
Reflux molar rate (kmole h ⁻¹)	-
Feed stage location	1, 6
C-301 compressor power consumption (kW)	1.7049
E-301 heater heat duty (Gkcal h^{-1})	0.4115
Steam consumption at E-301 heater (kg h^{-1}) (175.00 °C saturated steam)	846.61
E-303 refrigerator heat duty (Gkcal h^{-1})	0.2096
Solvent feeding pump power consumption (n=0.6) (kW)	36.69

Table 11. SelexolTM process simulation results

Figure 8. A schematic diagram for the CO₂ capture process using aqueous DEPG solution (Aspen Plus).

Step	Item	Result
1	Evaporator heat duty (Gcal h ⁻¹)	0.2096
2	Compressor discharge pressure (kPa)	1,600.00
3	J-T expansion valve outlet pressure (kPa)	130.00
4	Refrigerant temp. at expansion valve outlet ($^{\circ}C$)	-36.27
6	Total refrigerant circulation rate (kg h^{-1})	4,185.02
7	Compressor power consumption, (n=0.7) (kW)	197.82
8	Condenser heat duty (Gcal h^{-1})	0.3797
9	Cooling water consumption (ton h^{-1}) (supply / return temp. = $32/40$ °C)	38.14

 Table 12. Computer simulation results for refrigeration cycle of SelexoITM process

내었다. Table 11을 보면 흡수탑 상부에서 CO₂의 제거율은 원료대비 99.00%가 되는 것을 볼 수 있다. 그리고 이때 필요 한 용매의 유량은 14,339.00 kg h⁻¹가 된다. 또한 CO₂ 탈거를 돕기 위해 필요한 가열기(E-301)의 heat duty는 0.4115 Gcal h⁻¹가 되며 상압의 air를 160.00 kPa의 압력으로 압축하기 위 해 필요한 압축기(C-301) 소요 동력은 1.71 kW 정도가 된다. Table 12에는 99.00 wt%의 DEPG용매의 공급온도를 영하

20.00 ℃로 낮추기 위한 냉동 사이클의 조업조건과 조업 결과 에 대해서 요약해 놓았다. Table 12를 보면 프로판 냉매의 총 순환유량은 4,185.02 kg h⁻¹이며, 프로판 증기 재압축을 위해 필요한 압축기 소요동력은 효율 70.00%를 감안했을 때 197.82 kW가 되었다. 그리고 프로판 응축기에서 필요한 냉각수 소 모량은 약 38.14 ton h⁻¹ 정도가 된다.

4. 결과 비교 및 결론

Table 13에는 CO₂ 회수공정에 대한 각각의 전산모사 결과 를 요약하여 나타내었다. Table 13을 보면 99.00%의 CO₂를 제 거하기 위한 용매 순환유량은 질량기준으로 Rectisol[®] process가 가장 적은 것을 알 수 있다. 하지만 주요 장치를 보면 Ractisol[®] process의 경우 1기의 흡수탑과 2기의 증류탑으로 구성되어 있으므로 다른 공정에 비해 결코 공정사이즈가 작지 않은 것 을 예상할 수 있다. 또한 1년 운전시간을 8,766 시간으로 하 고, 전기비용을 0.0775 \$ kWh⁻¹으로 가정했을 때, 각 공정에서 의 연간 전기비용은 SelexoITM process > Purisol[®] process > Rectisol[®] process 순으로 많게 계산되었다. 그리고 스팀과 냉각 수(cooling water)사용량에 대해서 비교한 결과 Rectisol[®] process > SelexoITM process > Purisol[®] process > SelexoITM process > 순으로 Rectisol[®] pro-Rectisol[®] process > Purisol[®] process > SelexoITM process > 안 것을 볼 수 있다.

따라서 본 연구결과를 다음과 같이 정리할 수 있다.

1) Purisol[®] process에 사용되는 NMP용매는 CO₂와의 상대 휘발도 차이가 매우 높으므로 20.00 kPa까지의 감압과 60.00 ℃ 정도의 용매 가열을 통해서도 용매에 흡수된 CO₂를 98.00% 이상 탈거시키는 것이 가능하였다. 이때 감압드럼 상부로 CO₂ 와 함께 나가는 용매 손실 량은 0.06% 이내로 낮았으며, 손실 되는 용매는 냉각을 통해 60.00% 이상 회수가 가능할 것으로

Ta	ble	13.	Rectisol	, Sele	exolTM,	and	Purisol	Process	simu	lation	resul	ts
----	-----	-----	----------	--------	---------	-----	---------	---------	------	--------	-------	----

Process	Rectisol®	Purisol®	SelexolTM
Main equipment	absorber stripper solvent recovery column 4 refrigerator	absorber decompression drum vacuum system refrigerator	absorber decompression drum stripper 4 refrigerator
Solvent	Methanol	NMP	DEPG
Solvent purity (wt%)	99.00	99.00	99.00
Solvent temperature ($^{\circ}$ C)	-20.00	-10.00	-20.00
CO ₂ removal ratio (%)	99.00	99.00	99.00
Solvent feeding rate to absorber (kg h^{-1})	4,029.52	9,410.47	14,339.00
Electricity			
Sol. feeding pump power consumption (n=0.60) (kW)	15.78	25.69	36.69
Total compressor power consumption (n=0.70) (kW)	86.64	169.30	199.53
Electricity cost for 1 yr () (0.0775 kWh ⁻¹)	<u>69,580.56</u>	<u>132,469.38</u>	<u>160,479.60</u>
Cooling water			
Total cooling water consumption (ton h^{-1}) (supply / return temp. = $32/40$ °C)	233.58	30.77	38.14
Cooling water cost for 1 yr () (0.02378 ton ⁻¹)	<u>41,918.56</u>	<u>6,392.60</u>	<u>7,923.75</u>
Steam			
Total steam consumption (kg h^{-1}) (Steam temp. = 175.0 °C)	3,391.94 at reboiler of stripper and solvent recovery col.	246.09 at heater (E-201)	846.61 at heater (E-301)
Steam cost for 1 yr (\$) (0.0300 \$ kg ⁻¹)	914,092.18	<u>64,716.75</u>	222,641.50
Total operating cost for 1 yr (\$)	1,025,591.31	203,578.73	<u>391,044.84</u>

판단된다. 또한, 본 공정과 같이 원료 중에 물이 포함되어 있 는 경우에 Purisol[®] process는 20.00 kPa정도까지의 감압과 60.00 ℃ 정도의 용매 가열을 통해서 공정외부로 일정량의 물 을 배출시키는 것이 가능하였다.

2) SelexolTM process에 사용되는 DEPG용매는 NMP용매 와 마찬가지로 CO₂와의 상대휘발도 차이가 매우 높으므로 120.00 kPa까지의 감압과 60.00 ℃ 정도의 용매 가열 그리고 air stripper 통해서 용매에 흡수된 CO₂를 99.99% 이상 탈거시 키는 것이 가능하였다. 이때 감압드럼 상부로 CO₂와 함께 나 가는 용매 손실 량은 거의 없었으며, 80.00 ℃ 정도의 압축공 기를 사용하는 air stripper를 통해서 공정외부로 일정량의 물 을 배출시키는 것이 가능하였다.

3) Rectisol[®] process에 사용되는 메탄올 용매는 가격이 NMP 나 DEPG에 비해 저렴하지만 메탄올 용매에 흡수된 CO2를 탈거시키기 위해서는 증류탑이 사용되어야 함으로 에너지 측 면에서 불리해 지는 것을 알 수 있었다. 또한, 원료 중에 물이 포함되어 있는 경우에는 물 배출을 위하여 스팀과 냉각수를 사 용하는 증류탑 1기가 추가적으로 필요함으로써 에너지 사용 과 공정규모 측면에서 상당히 불리해지는 것을 알 수 있었다. 4) DME 생산 공정 중에 포함된 CO2 제거공정에 대해서 물리적 흡수제를 이용하는 3가지 대표적인 공정을 적용해본 결과 다음과 같은 결과를 얻을 수 있었다. 공정사이즈에 대한 예상순서는 Rectisol[®] process > Purisol[®] process, SelexolTM process로 예상되며 주요 장치에 대한 에너지 소모량을 비교 해보았을 때 운전비용에 대한 예상순서는 Rectisol[®] process >> SelexolTM process > Purisol[®] process 순으로 많이 소요 될 것으로 판단된다. 결국, DME 생산 공정에서 CO2제거 공 정으로 가장 적합한 공정은 Purisol[®] process으로 판단된다. 본 연구결과는 합성가스 중에 CO2를 제거해야 하는 다양 한 공정에서 물리적 흡수제를 사용한 이산화탄소 제거공정을 선정하는데 참고자료가 될 수 있을 것으로 판단된다.

감사

본 연구는 LNG 플랜트 사업단의 연구비지원에 의해 수행 되었습니다.

References

- Semelsberger, T. A., Borup, R. L., and Greene, H. L., "Dimethyl Ether (DME) as an Alternative Fuel," *J. Power Sources*, 156, 497-511 (2006).
- Youn, J., Lee, M., Park, C., Hwang, I., Ha, J., and Kang, Y., "Feasibility Test of LPG Vehicles by Using DME-LPG Blends," *J. Energy Eng.*, 24(4), 33-41 (2015).
- Oguma, M., "DME Standards Update & Overview," 6th International DME Conference, San Diego (2014).
- JIS K 2180-1, "Dimethylether for Fuels," Japanese Standard Association (2013).
- 5. ASTM D7901, "Standard Specification for Dimethyl Ether for

Fuel Purposes," ASTM International (2014).

- ISO 16861, "Petroleum Products Fuels (Class F)- Specifications of Dimethyl Ether," International Organization for Standardization (2015).
- KS M 2078, "Determination of Hydrocarbons and Dimethyl Ether (DME) in Liquefied Petroleum Gases (LPG) and LPG-DME Mixtures - Gas Chromatography (GC)," Korean Agency for Technology and Standards (2013).
- Choi, C. W., Cho, W., Baek, Y. S., and Row, K. H., "Experimental Study on the Synthesis of Dimethyl Ether," *J. Korean Ind. Eng. Chem.*, 17, 125 (2006).
- Mo, Y. G., Cho, W., and Baek, Y. S., "Development of Direct DME Synthesis Process," *J. Korean Inst. Gas*, 14, 41 (2010).
- Cho, D. H., Rho, J. H., Kim, D. S., and Cho, J. H., "A Study for Carbon Dioxide Removal Process Using Methanol Solvent in DME Manufacture Process," *J. Korea Acad.-Ind.*, 14(3), 1502-1511 (2013).
- Kohl, A. L., and Nielsen, R. B., Gas Purification, 5th ed., Gulf Publishing Company, Houston, Texas (1997).
- Olajire, A. A., "CO₂ Capture and Separation Technologies for End-of-Pipe Applications - A review," *Energy*, **35**, 2610-2628 (2010).
- Karim, A. A., Abdel-Rahman Z. A., and Hadi, A. J., "Solubility Prediction of CO₂ in Several Physical Liquid Solvents using ChemCad and HYSYS Simulators," *Diyala J. Eng. Sci.*, 356-373 (2010).
- UOP LLC, A Honeywell Company, "Meeting Staged CO₂ Capture Requirements with the UOP Selexol Process," UOP, 01-19 (2009).
- Renon, H., and Prausnitz, J. M., "Local Composition in Thermodynamic Excess Functions for Liquid Mixtures," *AIChE J.*, 14(1) 135-144 (1968).
- Soave, G., "Equilibrium Constants from a Modified Redlich-Kwong Equation of State," *Chem. Eng. Sci.*, 27, 1197-1203 (1972).
- Twu, C. H., Bluck, D., Cunningham, J. R., and Coon, J. E., "A Cubic Equation of State with a New Alpha Function and New Mixing Rule," Fluid Phase Equil., 69, 33-50 (1991).
- Huang, S. H., and Radosz, M., "Equation of State for Small, Large, Polydisperse and Associating Molecules," *Ind. Eng. Chem. Res.*, 29, 2284 (1990).
- Huang, S. H., and Radosz, M., "Equation of State for Small, Large, Polydisperse and Associating Molecules: Extention to Fluid Mixtures," *Ind. Eng. Chem. Res.*, **30**, 1994 (1991).
- Gross, J., and Sadowski, G., "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules," *Ind. Eng. Chem. Res.*, 40, 1244 (2001).
- Senol, I., "Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions," *Chem. Eng. Sci.*, 59, 1244 (2011).