수열방법으로 합성된 이산화망간의 물리화학적 특성과 일산화탄소 산화반응

이영호[†], 전수아[†], 박상준[†], 윤현기[§]*, 신채호[†]*

[†]충북대학교 화학공학과 28644 충북 청주시 서원구 충대로 1 [†](주)에코프로 28118 충북 청주시 청원구 양청송대길 116 [§]충북대학교 산학협력단 28644 충북 청주시 서원구 충대로 1

(2015년 10월 10일 접수; 2015년 10월 15일 채택)

Physicochemical Properties of MnO₂ Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation

Young-Ho Lee[†], Su A Jeon[†], Sang-Jun Park[†], Hyun Ki Youn^{§*}, and Chae-Ho Shin^{†*}

[†]Department of Chemical Engineering, Chungbuk National University 1 Chungdae-ro, Seowon-gu, Cheongju-si, Chungbuk 28644, Korea

[†]ECOPRO

116 Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 28118, Korea [§]Industry-University Cooperation Foundation, Chungbuk National University 1 Chungdae-ro, Seowon-gu, Cheongju-si, Chungbuk 28644, Korea

(Received for review October 10, 2015; Accepted October 15, 2015)

요 약

MnO₂를 KMnO₄와 MnCl₂·4H₂O을 이용해 자연침전을 유도한 후, 수열방법으로 120-200 ℃, 0.5-5시간 범위에서 제조하여 300 ℃에서 열처리 후 CO 산화반응을 수행하였다. 촉매활성 원인의 규명과 물리화학적 특성을 분석하기 위해 X 선 회절 분 석, 질소 흡착, 주사전자현미경, 수소 또는 일산화탄소 승온환원 분석(H₂- 또는 CO-TPR)을 실시하였다. 합성조건에 따라 순 수한 α-MnO₂ 혹은 α/β-혼합상을 가진 MnO₂가 각각 합성되었다. 촉매활성과 안정성은 순수한 α-MnO₂ 상에서 α/β-혼합상 을 가진 MnO₂보다 우수하게 관찰되었다. 특히, 150 ℃에서 1시간 수열 합성된 촉매는 가장 큰 비표면적인 214 m² g⁻¹을 가졌 으며 H₂, CO-TPR 분석에서 가장 우수한 환원성과 격자산소 종의 활성을 보였으며 일산화탄소의 승온 및 등온 산화반응에 서 가장 우수한 촉매활성을 나타내었다. 이것은 촉매의 물리화학적 특성에 기인한 것으로 촉매의 결정구조, 비표면적, 환원 성 및 격자산소 종의 활성은 촉매활성과 깊은 상관관계가 존재함을 확인하였다.

주제어: 이산화망간, CO 산화반응, 수열합성, 결정구조

Abstract : MnO₂ was prepared by a hydrothermal process method in the range of 120-200 °C and 0.5-5 h, calcined at 300 °C after induction of precipitation using KMnO₄ and MnCl₂•4H₂O, and its catalytic activity was compared for CO oxidation. The catalysts were characterized using by X-ray diffraction, N₂-sorption, scanning electron microscopy, and temperature programmed reduction of H₂ or CO. The crystalline structure of pure α -MnO₂ or hybrid α/β -MnO₂ was controlled by the preparation conditions. The pure α -MnO₂ showed better catalytic activity and thermal stability than hybrid α/β -MnO₂. Especially, α -MnO₂ prepared at 150 °C for 1 h has the highest specific surface area 214 m² g⁻¹, reducibility and labile lattice oxygen species analyzed by H₂, CO-TPR, respectively. It also showed the best CO oxidation activity in both conditions of temperature programmed and isothermal reaction. The results came from the physicochemical properties of catalysts like the crystalline structure, specific surface area, reducibility and lattice oxygen species, and which are correlated with catalytic performance.

Keywords : MnO₂, CO oxidation, Hydrothermal synthesis, Crystalline structure

* To whom correspondence should be addressed.

E-mail: hkyoun@chungbuk.ac.kr; chshin@chungbuk.ac.kr http://cleantech.or.kr/ct/

doi: 10.7464/ksct.2015.21.4.248 pISSN 1598-9712 eISSN 2288-0690

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licences/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. 서 론

일산화탄소(CO)는 피셔-트롭시 합성반응((2n + 1)H₂ + nCO → C_nH_{2n+2} + nH₂O), 수성가스전환반응(CO + H₂O → CO₂ + H₂)의 원료물질과 반도체산업 내 에칭공정에서 수율 촉진을 위한 물질로 사용된다. 이처럼 산업적인 측면에서 매우 중요 한 물질로 사용되지만, 연료의 연소, 음식물, 축사분뇨의 부패 로 인해 발생하는 CO는 포집을 하기엔 양이 극히 드물고 산 발적이며 순도 또한 낮기 때문에 대기에 배출되기 전 독성이 없는 이산화탄소로 산화시켜 배출시키고 있다.

CO 제거반응은 CO + 1/2O₂ → CO₂ (ΔH^o = -283 kJ mol⁻¹) 을 따른다[1]. CO 제거를 위해 Al₂O₃, TiO₂, ZrO₂, CeO₂ 등의 지지체에 귀금속 Pd, Pt, Au, Ag, Rh를 담지한 촉매를 많이 사용해왔다[2-5]. Xu et al.[6]은 SiO2를 지지체로, Pd와 Au의 비율을 달리하여 담지 후 CO 산화반응에 적용하였고, Park et al.[7]은 나노 크기의 Rh-Pt 합금을 제조해 CO 산화반응을 실 시하였다. 귀금속 촉매는 우수한 활성, 내피독성 내마모성 내 충격성 내열성 등 안정성을 보이지만, 희소성과 높은 원료비 용을 고려했을 때 지속적인 사용과 대형화가 어려워 귀금속 을 대체할 촉매가 필요하며 전이금속이 주목을 받고 있다. Fe, Co, Mn 등 전이금속은 귀금속과 비교하여 광물 내 풍부하게 분포되어 있고 가격이 저렴해 최근 CO 산화반응을 위한 차세 대 촉매로 많은 연구가 이루어지고 있다[8-13]. 그 중 Mn 산화 물은 환경친화적이고 자연적으로 풍부하게 존재한다[14-16]. 전자수용과 산소저장능력이 뛰어나기 때문에 금속 공기 전지 및 연료 전지용 음극재, 산화촉매로 사용된다[14,15,17-20]. 양 이온교환능력과 분자흡착성질이 뛰어나 이온 및 분자체[21] 로, spinel구조를 가진 α-, γ/β-, β-, δ-MnO₂는 MnO₂/Li 이차전 지[22]로 사용된다.

Mn산화물은 pyrolusite (1 X 1), ramsdellite (1 X 2), hollandite (2 X 2), romanechite (2 X 3), todorokite (3 X 3) 등 터널 층상 구조를 가지고 있으며 합성법과 Mn전구체에 따라 다른 구조 를 나타낸다[21,23-27]. 가장 일반적인 방법으로 산화-환원 침 전법이 있으며 염기, 약산성 수용액상에서 birnessite, 산성 수 용액상에서 hollandite구조로 제조된다[21]. Giovanoli 등[21] 은 Mn 전구체로 MnX₂ (X⁻ = Cl, NO₃), 침전제로 NaOH를 사 용하여 Na-birnessite구조를 가진 Mn산화물을 합성하였다. NaOH 대신 AOH (A = Li, K, Rb, Cs)를 이용하여 A-birnessite 구조가 합성되는 연구도 제안하였다[29,30]. 계면활성제인 cetyltrimethylammonium (CTAB)을 이용해서 Mn 산화물을 제조 한 보고도 있다. 열처리 과정에서 계면활성제는 물질 내에서 제거가 되고 그 자리는 세공으로 남게 된다. CTAB 양에 따라 최종생성물은 정방향계, 6방정계 등 다양한 결정상을 갖게 된 다[28]. Soft chemical을 이용한 수열반응은 터널 구조의 망간 산화물의 크기를 조절하기에 적합하다. Soft chemical로 크기 가 다른 양이온 전구체(Li⁺, K⁺, Mg²⁺, Ba²⁺)를 사용해 터널크 기를 조절해 spinel (1 X 3), hollandite (2 X 2), romanechite (2 X 3), todorokite (3 X 3)구조를 가진 Mn 산화물을 합성할 수 있다[21]. 그 외 spinel구조를 생성하기 위한 솔-젤법[29]과 Mn 산화물의 분자 및 터널크기를 제어할 수 있는 고상법[30] 등 Mn 산화물과 관련되어 많은 연구가 이루어지고 있다. 두 개 이상의 전이금속을 결합한 연구도 활발히 이루어지고 있다. 본 연구실의 선행연구[31]에서는 상온에서 우수한 활성과 안 정성을 보인 Cu-Mn 산화물촉매를 합성하였다. Cao et al.[32] 은 Co-Fe 혼합비율과 소성온도를 달리하여 전이금속산화물 촉 매를 제조해 CO 산화반응에 적용하였다. 합성조건에 따라 촉 매는 다양한 결정구조, 비표면적, 산소 종을 비롯한 물리화학 적 특성과 촉매활성을 보인다. Liang et al.[24]은 수열합성반 응으로 합성조건을 달리하여 서로 다른 결정상을 가진 Mn 산 화물을 합성해 CO 산화반응을 실시한 결과 $α - \approx \delta - \gamma - > \beta$ -MnO₂ 순으로 촉매활성이 우수함을 연구하였다.

본 연구에서는 수열합성법으로 합성온도와 시간에 따른 MnO_2 를 제조하고 촉매활성을 시험하기 위해 승온 및 등온조 건에서 CO 산화반응을 수행하였다. 또한 촉매반응의 활성 및 비활성화의 규명을 위해 X-선 회절분석(X-ray diffraction, XRD), 질소 흡착 및 탈착(N₂-sorption), 주사전자현미경(scanning electron microscopy, SEM), H_2 승온 환원(temperature programmed reduction of H_2 , H_2 -TPR), CO 승온 환원(CO-TPR)을 통해 물 리화학적 특성을 분석하였다.

2. 실험 방법

2.1. 촉매제조

본 연구에서는 과망간산칼륨(KMnO4, 99.3%, SAMCHUN CHEMICALS)과 염화망간(II) 4수화물(MnCl₂·4H₂O, 98%, JUNSEI)을 이용하였다. 두 반응물은 다음과 같은 반응으로 산화물을 형성한다.

 $2KMnO_4 + 3MnCl_2 + 2H_2O \rightarrow 5MnO_2 + 2KCl + 4HCl$

먼저 0.030 mol KMnO₄용액에 0.045 mol MnCl₂·4H₂O 용액 을 한 방울씩 떨어뜨렸다. 두 전구체 간 반응을 통한 자연침 전을 유도하여 따로 침전제는 사용하지 않았다. 용액의 충분 한 혼합을 위해 0.5시간 동안 상온에서 교반 후, acid digestion bombs (PARR INSTRUMENT COMPANY)과 autoclave (Daeil Engineering)를 이용해 50 rpm으로 120, 150, 180, 200 ℃에서 0.5, 1, 3, 5시간 동안 각각 수열반응을 실시하였다. 합성 된 수화물은 4 L의 탈 이온수로 세척을 거쳐 80 ℃에서 12시간 동안 건조되었다. 회수된 수화물은 공기 흐름 하에 300 ℃에 서 2시간 공기중에서 열처리를 통해 산화물의 형태로 얻어졌 다. 합성된 산화물은 합성조건에 따라 MnX(Y)로 표기했으 며, 여기서 X는 합성온도를 나타내며 Y는 동일온도에서 합 성시간이다.

2.2. 특성분석

결정성과 구조적 특성을 알아보기 위해 Bruker AXS사 (λ_{Cu-Kα} = 1.5418 Å)장치로 XRD 분석을 실시하였다. 이 때, 사 용전류와 전압은 40 mA와 40 kV이며, 2θ = 10~80° 범위에서 측정하였다. 분석결과는 JCPDS (joint committee on powder diffraction standards) 파일을 기준으로 결정피크의 위치를 확 인하였다.

비표면적, 세공부피 및 세공크기분포도를 측정하기 위해 Micromeritics사의 ASAP2020 장치로 -196 ℃에서 N₂-sorption 분석을 실시하였다. 비표면적은 P/P₀ = 0.05-0.20범위에서 계 산하였고, 총 세공부피는 P/P₀ = 0.995에서 질소 흡착 량으로 계산하였다. 세공크기분포도는 BJH (Barrett-Joyner-Halenda) 방법으로 분석하였다.

SEM (Carl Zeiss)으로 표면을 분석을 실시하였다. 시료의 표 면분석을 위해 백금으로 시료 표면을 코팅하였다.

촉매의 환원거동을 분석하기 위해 사극자질량분석기(quadruple mass spectrometer, GSD301, Pfeiffer vacuum)를 이용해 H₂-TPR 분석을 실시하였다. 0.03 g의 촉매를 U자 석영 고정 층 반응기(I.D = 10 mm)에 충진 후 Ar 30 cm³ min⁻¹ 유량, 4 ℃ min⁻¹ 승온속도로 300 ℃에서 1시간 동안 전처리를 실시 하였다. 상온으로 냉각 후 30 cm³ min⁻¹ 유량으로 10% H₂-Ar 을 흘려주면서 10 ℃ min⁻¹) 승온속도로 500 ℃까지 승온하여 환원거동을 분석하였으며, 소모되는 H₂의 양(MS signal of ·H₂, *m/z* = 2)으로 측정하였다.

촉매활성의 원인이 되는 표면의 격자산소의 양을 관찰하기 위해 QMS를 이용해 CO-TPR 분석을 실시하였다. 반응기와 촉매양은 H₂-TPR과 동일하게 하였다. 분석 전, 300 ℃에서 (4 ℃ min⁻¹) 30 cm³ min⁻¹ Ar으로 0.5시간 전처리를 실시 후 상 온까지 냉각시켰다. 상온에서 5% CO-Ar (30 cm³ min⁻¹)을 700 ℃까지 10 ℃ min⁻¹으로 승온하며 격자산소와 반응하여 생성 되는 CO₂의 양(MS signal of •CO₂, *m/z* = 44)을 측정하였다.

2.3. 촉매반응

승온 CO 산화반응을 위해 석영 고정층 반응기에 촉매 0.05 g을 충진하여 수행하였다. 반응 전, 촉매를 300 ℃에서(2 ℃ min⁻¹) 1시간 100 cm³ min⁻¹ N₂로 하여 상온까지 냉각시켰다. 반응물은 총 유량 100 cm³ min⁻¹, CO/O₂/N₂의 부피비를 1/4/95 로 조성하여 반응 초기, 상온에서 0.25시간 촉매 층으로 반응 물을 통과시킨 후 2 ℃ min⁻¹으로 300 ℃까지 승온시켰다. 촉 매활성 및 안정도를 관찰하기 위해 170 ℃에서 18시간 등온 반응을 실시하였다. CO 전환율은 비분산 적외선(non-dispersive infrared, ND-IR)시스템이 구축되어 있는 CO 분석기(Teledyne Model 7500)로 실시간 분석을 진행하여 반응된 CO 농도를 공 급된 CO 농도로 나누어 계산하였다.

3. 결과 및 고찰

3.1. 특성분석

본 연구에서 사용한 MnO₂ 촉매의 XRD 분석결과를 Figure 1 에 나타내었다. α-MnO₂는 2θ = 37.3°에서 가장 강한 회절을

Figure 1. XRD patterns of MnO₂ catalysts synthesized in the condition of (A1) different temperatures for 1 h, (B1) 150 °C for different hours. (A2), and (B2) are the XRD patterns of specific angle at $2\theta = 26-32^{\circ}$; (a) Mn120(1), (b) Mn150(1), (c) Mn180(1), (d) Mn200(1), (e) Mn150(0.5), (f) Mn150(3), and (g) Mn150(5).

보이며 그 순서는 37.5° > 28.8° > 60.3°이다. β-MnO2는 28.6° 에서 가장 큰 회절피크를 보이며 28.7° > 56.7° ≈ 37.3°의 순서로 감소한다. 본 연구를 위해 제조된 시료 중 Mn120(1), Mn150(1), Mn180(1)과 Mn150(0.5), Mn150(1), Mn150(3)에서 공통적으 로 순수한 α-MnO2의 결정상을 보였으며 Mn200(1)와 Mn150(5) 는 α-MnO2과 20 = 28.7, 56.7°에서 나타나는 β-MnO2도 함께 관찰되었다(Figure A1, B1). 보다 면밀한 분석을 위해 20 범위 를 확대하여 Figure 1의 A2와 B2에 나타내었다. α-MnO2에서 관찰되는 20 = 28.8°의 회절 각이 Mn200(1)와 Mn150(5)은 β-MnO2에서 보이는 가장 큰 회절각인 20 = 28.7°로 0.1° 자리 옮김을 한 것으로 관찰되었다. 이를 통해 200 ℃에서 1시간, 혹은 150 ℃에서 5시간 수열반응 후 열처리 시 α-상이 뿐만 아니라 일부 β-상도 함께 형성됨을 확인하였다.

시료의 비표면적과 세공분포에 대한 질소 흡착 등온선 분 석결과를 Table 1과 Figure 2에 나타내었다. 모든 시료에서 질소 흡착 시 모세관 응축으로 인한 전형적인 IV형태의 곡선 을 보이는 히스테리시스 현상이 다양한 P/P₀ 범위에서 관찰되었 다. 이는 분석된 시료가 중간세공의 크기임을 시사한다. 특히, Mn150(1)는 질소 탈착 시 P/P₀ = 0.42-0.48에서 인장 강도 효 과로 인한 흡착된 질소의 급격한 탈착이 일어났다. 이는 BJH 세공크기분포 결과에 반영되어, Mn150(1)촉매의 분석결과에 서 2-3 nm구간에서 질소 흡착(○) 시 관찰되지 않은 인공세공

Table 1. Physicochemical properties of MnO_2 catalysts prepared by
hydrothermal process and calcined at 300 °C

Catalyst	$(m^2 g^{-1})$	$\frac{V_{P}}{(cm^{3} g^{-1})}$	H_2 -TPR (°C) ^{a)}			CO-TPR
			1^{st}	2^{nd}	3 rd	(°C) ^{b)}
Mn120(1)	74	0.45	304	312	333	214
Mn150(1)	214	0.48	267	271	351	121
Mn180(1)	64	0.38	307	317	341	210
Mn200(1)	30	0.16	313	341	377	225
Mn150(0.5)	86	0.60	306	316	334	211
Mn150(3)	77	0.60	302	312	326	224
Mn150(5)	35	0.25	303	340	362	224

^{a)} Temperature at H₂ consumption detected by MS signal of \cdot H₂ (m/z = 2) in H₂-TPR; MnO₂ to Mn₂O₃ (1st), Mn₂O₃ to Mn₃O₄ (Mn₂O₃ \cdot MnO) (2nd), Mn₃O₄ to MnO (3rd)

^{b)} Temperature for the first detection of \cdot CO₂ signal (*m*/*z* = 44) meaning lattice oxygen species analyzed by CO-TPR analysis

이 탈착(■) 시 관찰되었다(Figure A2). 또한 질소의 탈착 시 분석된 세공크기는 약 4 nm로 세공에서 발생하는 차단영향 [33]으로 흡착 시 관찰된 세공 크기 (5 nm)보다 작게 분석되 었다. 비표면적은 MnX(1) 촉매에서 Mn150(1)이 가장 큰 214 m² g⁻¹으로 가장 크며 Mn150(1) > Mn120(1) > Mn180(1)

Figure 2. N₂ adsorption-desorption isotherm linear plot and BJH pore size distribution derived from adsorption and desorption branch of isotherm of MnO₂ catalysts synthesized in the condition of (A1, A2) different temperatures for 1 h, and (B1, B2) 150 °C for different hours: (a) Mn120(1), (b) Mn150(1), (c) Mn180(1), (d) Mn200(1), (e) Mn150(0.5), (f) Mn150(3), and (g) Mn150(5).

Figure 3. SEM images of MnO₂ prepared by hydrothermal synthesis: (a) Mn120(1), (b) Mn150(1), (c) Mn180(1), (d) Mn200(1), (e) Mn150(0.5), (f) Mn150(3), and (g) Mn150(5).

 > Mn200(1) 순으로 감소하였다. Mn150(Y)에서도 Mn150(1)
 > Mn150(0.5) > Mn150(3) > Mn150(5)의 경향을 보였다. 수열 합성과정에서 핵이 생성되어 비표면적이 증가했지만 합성조 건 150 ℃, 1시간 이상에서는 생성된 입자의 뭉침 현상이 발 생해 비표면적이 다시 감소함을 알 수 있었다[34,35]. 높은 비 표면적을 가진 촉매는 촉매표면에 반응물이 흡착하여 반응할 수 있는 활성점이 다수 노출되어 있기 때문에 우수한 촉매활 성을 기대할 수 있다.

Figure 3에 SEM 분석결과를 나타내었다. 모든 촉매에서 공 통적으로 α-MnO₂의 결정형태인 막대기 형태를 보였다[36]. MnX(1)시료에서 Mn120(1)은 일부에서 크기가 불규칙하게 뭉친 형태를 보였고, Mn150(1)은 α-MnO₂결정형태가 강하게 나타났다. Mn180(1)촉매는 α-MnO₂가 일부 β-MnO₂로 전이되 어 Mn200(1)에서 β-MnO₂의 결정형태인 hollow pyramid로 강 하게 성장했음을 관찰하였다(Figure 3(a)-(d))[37]. Mn150(Y) 시료에서는 α-MnO₂인 막대기 형태를 약하게 보인 Mn150(0.5) 촉매가 합성시간이 증가하면서 Mn150(5)촉매에서는 hollow pyramid형태로 결정성장 및 구조의 변화를 관찰하였다(Figure 3(b), (e)-(g)). 이는 XRD 분석과 상호 일치되는 결과로 150 ℃ 에서 5시간, 혹은 200 ℃에서 1시간 이상의 수열합성 시, 순수 한 α상이 아닌 α/β-혼합상의 MnO₂가 형성됨을 알 수 있었다.

Mn 산화물의 환원성을 알아보기 위해 H₂-TPR로 분석하여 Figure 4와 Table 1에 나타내었다. 일반적으로 H₂로 인한 Mn 종의 환원반응은 다음과 같은 세 단계를 따른다.

 $2MnO_2 + H_2 \rightarrow Mn_2O_3 + H_2O \tag{1}$

 $3Mn_2O_3 + H_2 \rightarrow 2Mn_3O_4 + H_2O \tag{2}$

$$Mn_{3}O_{4} + H_{2} \rightarrow 3MnO + H_{2}O \qquad (3)$$

제조된 MnO₂에서 세 단계로 환원경향이 관찰되었다. 순수 한 α-결정구조를 가진 Mn120(1)는 304, 312, 333 ℃에서 각각 Mn 산화물의 환원이 관찰되었고 Mn150(1)는 267, 271, 351 ℃에서, Mn180(1)과 Mn200(1)은 307, 317, 341 ℃와 313, 341, 377 ℃에서 각각 관찰되었다. 공통적으로 1과 2과정이 연속 적으로 발생했는데, 이는 산화수 4 (Mn⁴⁺)를 갖는 Mn종이 산 화수 3 (Mn³⁺)를 거쳐 일부 2 (Mn²⁺, Mn³⁺)의 산화수를 갖는 Mn종으로 급격히 환원되었음을 보여준다[24]. α와 β의 혼합

Figure 4. H₂-TPR profiles of MnO₂ via hydrothermal synthesis at (A) different temperatures for 1 h, and (B) 150 °C for different hours: (a) Mn120(1), (b) Mn150(1), (c) Mn180(1), (d) Mn200(1), (e) Mn150(0.5), (f) Mn150(3), and (g) Mn150(5).

상을 가진 Mn200(1), Mn150(5)는 313, 341, 377 ℃와 303, 340, 362 ℃에서 각각 1, 2, 3단계의 환원이 관찰되었다. H₂에 의한 촉매의 산화수 변화가 뚜렷하게 분리되어 발생한 것이 며, 이는 순수한 α-상을 가진 촉매와 명확하게 서로 다른 환 원성을 갖고 있음을 분석하였다. 총 세 단계 중, 1 과정은 촉 매에 존재하는 다양한 산소 종 중에서 촉매활성에 영향을 미 치는 촉매표면의 격자산소 종 환원에 대한 정보를 포함한다 [1]. MnX(1)에서 Mn150(1)는 가장 낮은 온도에서 1st가 관찰 되어 Mn120(1), Mn180(1), Mn200(1)보다 낮은 에너지 상태 에서도 활성을 보임을 분석하였다. Mn150(Y)촉매는 Mn150(1) << Mn150(3) ≈ Mn150(5) ≈ Mn150(0.5)의 경향을 보였다. 특 히, Mn200(1)과 Mn150(5)의 3 과정은 다른 Mn 산화물의 환 원 경향보다 고온에서 관찰되고 그 넓이가 α-MnO2에서 커짐 을 알 수 있는데, 이는 Mn 산화물 내에 산소 종이 상대적으로 많이 포함되어 있고 환원을 위해서는 다른 Mn 산화물 보다 높은 활성화 에너지가 필요하며, 실질적으로 CO 산화반응에 참여하지 않는 Mn 산화물이 많음을 시사한다 할 수 있다. 일반적으로, CO 산화반응은 MnO2 촉매 표면에 흡착을 하 며 촉매 표면에 존재하는 산소와 반응 후 CO2 형태로 탈착되 어 진행이 되며 Mn종의 산화수 변화를 유도한다. 반응경로를

$$MnO_2 + CO \rightarrow Mn_2O_3 + CO_2$$
(4)

$$Mn_2O_3 + CO \rightarrow 2Mn_3O_4 + CO_2$$
 (5)

$$Mn_3O_4 + CO \rightarrow 3MnO + CO_2 \tag{6}$$

수열합성 조건에 따라 제조된 MnO₂가 가진 산소 종의 성 질을 관찰하기 위해 CO-TPR 분석을 실시하고 Figure 5와 Table 1에 나타냈다. 모든 시료에 대해 공통적으로 CO에 의 한 Mn 산화물의 환원이 5단계에 걸쳐 일어남을 관찰하였다. 이는 Mn 산화물 내 다양한 환경에서 존재하는 산소 종이 존 재함을 알 수 있고, 특히 저온에서 생성된 피크는 분석과정에

살펴보면 다음과 같다.

서 CO와 결합한 격자산소 종의 환원 정보를 나타낸다[38, 39]. Table 1에 CO-TPR 분석으로 관찰한 격자산소 종의 활성 온도를 나타내었다. MnX(1) 중 Mn150(1)는 121 ℃에서 격자 산소의 활성을 보였으며 214, 210, 225 ℃에서 각각 활성을 나타낸 Mn120(1), Mn180(1), Mn200(1)보다 활성의 용이함을 보였다. Mn150(Y)에서도 Mn150(1)이 가장 낮은 온도에서 활 성을 보였으며 Mn150(0.5), Mn150(3), Mn150(5)순서로 각각 211, 224, 224 ℃에서 촉매 표면의 격자산소 종이 CO에 의해 활성을 보였다. 이는 격자산소의 출입이 용이할 때 촉매는 우 수한 활성을 보여주는 것으로 보인다. 위 결과로 Mn150(1)촉 매가 CO 산화반응에 대한 활성이 가장 우수할 것이라고 기대 할 수 있다.

3.2. CO 산화반응

Mn 산화물의 CO 산화반응은 Mars van Krevelen (MvK) 반 응기구를 따른다고 보고되었다[40]. MvK 반응기구에서 CO 산화반응은 아래 식과 같이 촉매 표면에 흡착된 CO가 격자산 소와 반응을 하여 CO₂를 생성한다.

CO (ads) +
$$O^{2-}$$
 (lattice) + $2Mn^{4+/3+}$
 $\rightarrow CO_2$ (ads) + $2Mn^{3+/2+}$ (7)

촉매의 합성조건은 촉매구조와 활성에 큰 영향을 끼친다. 수열합성법으로 제조한 촉매에 있어 CO 산화활성을 알아보 기 위해 승온 및 등온반응을 실시하여 Figure 6과 Table 2에 나타내었다. 저온(<50 ℃)에서 활성을 보이는 촉매는 40-80 ℃ 영역에서 일시적인 CO 전환율의 급등을 보였다. 이는 상 온에서 0.25시간 동안 반응물이 촉매층을 통과하며 CO가 촉 매표면에 흡착한 결과로, 승온 과정에서 활성화된 격자산소 종과 반응을 하여 CO₂가 생성되어 탈착하여 CO전환율에 반 영이 되었다. Mn150(1)은 120, 150 ℃에서 CO전환율이 각각 50과 80%를 보여 MnX(1) 중 가장 낮은 온도에서 T_{50%}, T_{80%} 을 달성하였다. Mn120(1), Mn180(1)의 T_{80%}은 193, 209 ℃에 서 분석되었으며 Mn200(1)은 80% 이상 CO를 제거하지 못했

Figure 5. CO-TPR profiles of MnO₂ calcined at 300 °C after preparation (A) at X °C for 1 h, and (B) 150 °C for Y h; (a) Mn120(1), (b) Mn150(1), (c) Mn180(1), (d) Mn200(1), (e) Mn150(0.5), (f) Mn150(3), and (g) Mn150(5).

Figure 6. Temperature programmed CO oxidation over MnO₂ catalysts prepared using hydrothermal synthesis preparation at (A) 120-150 °C for 1 h, and (B) 150 °C for 0.5-5 h; (a) Mn120(1), (b) Mn150(1), (c) Mn180(1), (d) Mn200(1), (e) Mn150(0.5), (f) Mn150(3), and (g) Mn150(5).

Table 2. Catalytic activity for CO or	kidation in the condition of
temperature programmed ar	nd isothermal reaction over
MnO ₂ catalyst	
Temperature pro-	Isothermal reaction

Catalant	grammed	reaction ^{a)}	Isothermal reaction		
Catalyst	T _{50%} (℃)	T _{80%} (℃)	Initial con- version (%)	Deactivation rate $(\%)^{b)}$	
Mn120(1)	143	193	87.3	24.8	
Mn150(1)	120	150	90.5	7.6	
Mn180(1)	137	209	77.2	27.1	
Mn200(1)	211	-	15.5	41.2	
Mn150(0.5)	145	190	70.6	13.3	
Mn150(3)	185	236	44.2	26.8	
Mn150(5)	196	253	14.2	13.0	

^{a)} Temperature at CO conversion of 50%, and 80% in the temperature programmed oxidation of CO

^{b)} Values are after 18 h in the isothermal reaction; Deactivation rate $(\%) = (X_{18h} - X_{Initial}) / X_{Initial}$

다. Mn150(Y)에서도 Mn150(1)이 가장 좋은 활성을 보였으며 Mn150(0.5), Mn150(3), Mn150(5) 순으로 T_{80%}이 각각 190, 236, 253 ℃를 보여 활성이 감소함을 분석하였다. MnO2는 합 성 조건에 따라 화산형 모양의 촉매활성을 보였으며 이 결과 는 촉매의 물라화학적 특성과 깊은 관계가 있다. 물리화학적 특성과 반응성의 관계를 분석하기 위해 촉매활성(T_{80%}), 비표 면적, H₂에 의한 촉매의 환원성, 그리고 CO에 의한 촉매표면 격자산소 종의 활성결과를 Figure 7에 나타내었다. 이 분석결 과에서 보다 저온에서 격자산소 종이 활성을 보이고 환원성 이 뛰어나며 높은 비표면적을 보이는 촉매일 수록 촉매활성 이 우수하였다. 다만, H₂에 의한 환원이 Mn150(0.5)은 306 ℃, Mn150(3)은 302 ℃에서 관찰되어 촉매활성(T_{80%})과는 다른 경향을 보였지만, Mn150(3)보다 높은 비표면적을 가진 Mn150 (0.5)이 우수한 촉매활성을 보였다. 또 Mn150(3)와 Mn150(5) 은 서로 비슷한 환원성과 격자산소 종의 활성을 보였지만 더 높은 비표면적을 가진 Mn150(3)에서 우월한 촉매활성을 보 였다.

Figure 7. Correlations among a temperature at 80% CO conversion (■), a specific surface area (▲), a reduction temperature by H₂ (♦), and an activity behavior of lattice oxygen species by CO (●) of MnO₂ catalysts. Preparation condition: (A) at 120-200 °C for 1 h, and (B) at 150 °C for 0.5-5 h.

Figure 8. Isothermal CO oxidation over MnO₂ catalysts prepared using hydrothermal reaction: Mn120(1) (▲), Mn150(1) (■), Mn150(0.5) (♦), Mn150(3) (●), Mn150(5) (▼), Mn180(1) (◄), and Mn200(1) (►).

촉매활성의 안정성을 살펴보기 위해 등온반응을 실시하고 결과를 Figure 8과 Table 2에 나타내었다. Mn150(1)이 가장 높은 초기 전환율(90.5%)과 18시간 이후 가장 낮은 비활성화 정도를 보였다(Table 1). 반면, β-상을 띠는 Mn200(1)과 Mn150 (5)는 초기 CO 전환율이 각각 15.5%와 14.2%으로 α-MnO2보 다 낮은 반응성을 보였다. 특히 Mn150(1)는 α-MnO2 중에서 도 높은 비표면적과 많은 격자산소 종을 가지며 환원성이 우수 하기 때문에 가장 우수한 촉매활성을 나타냈음을 확인하였다.

4. 결 론

KMnO₄와 MnCl₂·4H₂O로부터 별도의 침전제 없이 수열반 응을 통해 MnO₂를 합성하였다. 승온 및 등온 조건에서 CO 산화반응을 수행하고 활성 및 비활성화의 원인을 규명하기 위 해 물리화학적 특성을 분석하였다. 합성 조건에 따라 순수한 α-상 및 α/β-혼합상을 가진 MnO₂를 선택적으로 합성하였고, 비표면적, 환원성, 그리고 격자산소 종의 활성을 조절하였다. 본 연구에서는 150 ℃에서 1시간 수열합성 후 300 ℃에서 2시 간 소성처리한 촉매가 가장 높은 비표면적과 저온에서 활발한 격자산소 종의 출입을 보였으며 승온 및 등온 CO 산화반응 모 두 활성이 가장 우수하였다. 이는 합성과 열처리 과정에서 진행 되는 핵 생성과 생성된 핵 간 소결현상으로 촉매의 결정상태, 비표면적과 환원성, 그리고 산소 종의 성질 변화를 비롯한 촉매 의 물리화학적 특성과 긴밀한 영향이 있음을 확인하였다.

감 사

이 논문은 2014년 산업통상자원부의 재원으로 한국에너지 기술평가원(KETEP)의 지원을 받아 수행한 연구과제 입니다 (No. 2014021194). 그리고 이 논문은 2015년 산업통상자원부 의 재원으로 수행한 연구과제 입니다(No. 201510052789). 그리 고 이 논문은 2013년도 충북대학교 학술연구지원사업의 신진 교수연구과제로 수행되었습니다. 연구비 지원에 감사드립니다.

References

- Park, J.-H., Kim, Y. J., Cho, K. H., Kim, E. S., and Shin, C.-H., "CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperatures," *Clean Technol.*, **17**, 41-47 (2011).
- Chen, S. F., Li, J. P., Qian, K., Xu, W. P., Lu, Y., Huang, W. X., and Yu, S. H., "Large Scale Photochemical Synthesis of M@TiO2 Nanocomposites (M = Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect," *Nano Res.*, **3**, 244-255 (2010).
- Chen, M. S., Cai, Y., Yan, Z., Gath, K. K., Axnanda, S., and Goodman, D. W., "Highly Active Surfaces for CO Oxidation on Rh, Pd, and Pt," *Surf. Sci.*, 601, 5326-5331 (2007).
- Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., and Delmon, B., "Low-Temperature Oxidation of CO over Gold Supported on TiO₂, α-Fe₂O₃, and Co₃O₄," *J. Catal.*, **144**, 175-192 (1993).
- Shapovalov, V., and Metiu, H., "Catalysis by Doped Oxides: CO Oxidation by Au_xCe_{1-x}O₂," *J. Catal.*, 245, 205-214 (2007).
- Xu, J., White, T., Li, P., He, C., Yu, J., Yuan, W., and Han, Y.-F., "Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation," *J. Am. Chem. Soc.*, **132**, 10398-10406 (2010).
- Park, J. Y., Zhang, Y., Grass, M., Zhang, T., and Somorjai, G. A., "Tuning of Catalytic CO Oxidation by Changing Composition of Rh-Pt Bimetallic Nanoparticles," *Nano Lett.*, 8, 673-677 (2008).
- Lin, H.-K., Chiu, H.-C., Tsai, H.-C., Chien, S.-H., and Wang, C.-B., "Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide," *Catal. Lett.*, 88, 169-174 (2003).
- Jansson, J., "Low-Temperature CO Oxidation over Co₃O₄/ Al₂O₃," J. Catal., **194**, 55-60 (2000).
- Xie, X., Li, Y., Liu, Z. Q., Haruta, M., and Shen, W., "Low-Lemperature Oxidation of CO Catalysed by Co₃O₄ Nanorods," *Nature*, 458, 746-749 (2009).
- Rida, K., López Cámara, A., Peña, M. A., Bolívar-Díaz, C. L., and Martínez-Arias, A., "Bimetallic Co-Fe and Co-Cr Oxide Systems Supported on CeO₂: Characterization and CO Oxidation Catalytic Behaviour," *Int. J. Hydrogen Energ.*, 40, 11267-11278 (2015).
- Cai, L., Hu, Z., Branton, P., and Li, W., "The Effect of Doping Transition Metal Oxides on Copper Manganese Oxides for the Catalytic Oxidation of CO," *Chinese J. Catal.*, **35**, 159-167 (2014).
- Tan, Z.-D., Tan, H.-Y., Shi, X.-Y., Zhuan, J., Yan, Y.-F., and Yin, Z., "Metal-Organic Framework MIL-53(Al)-Supported Copper Catalyst for CO Catalytic Oxidation Reaction," *Inorg. Chem. Commun.*, 61, 128-131 (2015).

- Zhao, Y., and Jiang, P., "MnO₂ Nanosheets Grown on the ZnO-Nanorod-Modified Carbon Fibers for Supercapacitor Electrode Materials," *Colloid. Surface. A: Physicochem. Eng. Aspects*, 444, 232-239 (2014).
- Patil, U. M., Sohn, J. S., Kulkarni, S. B., Park, H. G., Jung, Y., Gurav, K. V., Kim, J. H., and Jun, S. C., "A Facile Synthesis of Hierarchical α-MnO₂ Nanofibers on 3D-Graphene Foam for Supercapacitor Application," *Mater. Lett.*, **119**, 135-139 (2014).
- Wu, C.-H., Ma, J.-S., and Lu, C.-H., "Effects of Reducing Agents on the Electrochemical Properties of the Prepared Manganese Oxide Powders," *Curr. Appl. Phys.*, **12**, 1058-1063 (2012).
- Lv, Y., Li, H., Xie, Y., Li, S., Li, J., Xing, Y., and Song, Y., "Facile synthesis and Electrochemical Properties of MnO₂/ carbon Nanotubes," *Particuology*, 15, 34-38 (2014).
- Stobbe, E. R., de Boer, B. A., and Geus, J. W., "The Reduction and Oxidation Behaviour of Manganese Oxides," *Catal. Today*, 47, 161-167 (1999).
- Chang, C.-L., Lin, Y.-C., Bai, H., and Liu, Y.-H., "Applying Spray Pyrolysis to Synthesize MnO_X for Decomposing Isopropyl Alcohol in Ozone- and Thermal-Catalytic Oxidation," *Korean J. Chem. Eng.*, 26, 1047-1052 (2010).
- Lee, Y. S., Park, J. S., and Oh, K. J., "Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide (NMD) in a Fixed Bed," *Clean Technol.*, 2, 60-68 (1996).
- Feng, Q., Kanohb, H., and Ooi, K., "Manganese Oxide Porous Crystals," J. Mater. Chem., 9, 319-333 (1998).
- Botkovitz, P., Deniard, P., Tournoux, M., and Brec, R., "Structural and Electrochemical Characteristics of a Hollandite-type 'Li_xMnO₂'," *J. Power. Sources*, 43-44, 657-665 (1993).
- Subramanian, V., Zhu, H., and Wei, B., "Alcohol-Assisted Room Temperature Synthesis of Different Nanostructured Manganese oxides and Their Pseudocapacitance Properties in Neutral Electrolyte," *Chem. Phys. Lett.*, 453, 242-249 (2008).
- Liang, S., Teng, F., Bulgan, G., Zong, R., and Zhu, Y., "Effect of Phase Structure of MnO₂ Nanorod Catalyst on the Activity for CO Oxidation," *J. Phys. Chem. C*, **112**, 5307-5315 (2008).
- Li, Q., Luo, G., Li, J., and Xia, X., "Preparation of Ultrafine MnO₂ Powders by the Solid State Method Reaction of KMnO₄ with Mn(II) Salts at Room Temperature," *J. Mater. Proc. Technol.*, **137**, 25-29 (2003).
- Okitsu, K., Iwatani, M., Nanzai, B., Nishimura, R., and Maeda, Y., "Sonochemical Reduction of Permanganate to Manganese Dioxide: the Effects of H₂O₂ Formed in the Sonolysis of Water on the Rates of Reduction," *Ultrason. Sonochem.*, 16, 387-391 (2009).
- Lee, J.-H., and Ham, J.-Y., "Synthesis of Manganese Oxide Particles in Supercritical Water," *Korean J. Chem. Eng.*, 23,

714-719 (2006).

- Tian, Z.-R., Tong, W., Wang, J.-Y., Duan, N.-G., Krishnan, V. V., and Suib, S. L., "Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts," *Science*, 276, 926-930 (1997).
- Barboux, P., Tarascon, J. M., and Shokoohi, F. K., "The Use of Acetates as Precursors for the Low-Temperature Synthesis of LiMn₂O₄ and LiCoO₂ Intercalation Compounds," *J. Solid State Chem.*, **94**, 185-196 (1991).
- Koksbang, R., Barker, J., Shi, H., and Saïdi, M. Y., "Cathode Materials for Lithium Rocking Chair Batteries," *Solid State Ionics*, 84, 1-21 (1996).
- Cho, K. H., Park, J.-H., and Shin, C.-H., "Low Temperature CO Oxidation over Cu-Mn Mixed Oxides," *Clean Technol.*, 16, 132-139 (2010).
- Cao, J.-L., Li, G.-J., Wang, Y., Sun, G., Wang, X.-D., Hari, B., and Zhang, Z.-Y., "Mesoporous Co-Fe-O Nanocatalysts: Preparation, Characterization and Catalytic Carbon Monoxide Oxidation," *J. Environ. Chem. Eng.*, 2, 477-483 (2014).
- Groen, J. C., Peffer, L. A. A., and Pérez-Ramírez, J., "Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis," *Micropor. Mesopor. Mat.*, **60**, 1-17 (2003).
- Somiya, S., "Hydrothermal Reaction of High Density Sintering Oxides," *Hydrotherm. React. Mater. Sci. Eng.*, 22-26, 887-903 (1982).
- Yanagisawa, K., Kim, J.-H., Sakata, C., Onda, A., Sasabe, E., Yamamoto, T., Matamoros-Veloza, Z., and Rend'on-Angeles, J. C., "Hydrothermal Sintering under Mild Temperature Conditions: Preparation of Calcium-Deficient Hydroxyapatite Compacts," *Z. Naturforsch*, 65b, 1038-1044 (2010).
- Tiano, A. L., Koenigsmann, C., Santulli, A. C., and Wong, S. S., "Solution-Based Synthetic Strategies for One-Dimensional Metal-Containing Nanostructures," *Chem. Commun.*, 46, 8093-8130 (2010).
- Zheng, X., Lin, T., Cheng, G., Lan, B., Sun, M., and Yu, L., "Hollow Bipyramid β-MnO₂: Pore Size Controllable Synthesis and Degradation Activities," *Adv. Powder Technol.*, 26, 622-625 (2015).
- Hasegawa, Y., Fukumoto, K., Ishima, T., Yamamoto, H., Sano, M., and Miyake, T., "Preparation of Copper-Containing Mesoporous Manganese Oxides and Their Catalytic Performance for CO oxidation," *Appl. Catal. B: Environ.*, **89**, 420-424 (2009).
- Park, J.-H., Kang, D.-C., Park, S.-J., and Shin, C.-H., "CO Oxidation over MnO₂ Catalysts Prepared by a Simple Redox Method: Influence of the Mn (II) Precursors," *J. Ind. Eng. Chem.*, 25, 250-257 (2015).
- Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F., "Re-Investigating the CO Oxidation Mechanism over Unsupported MnO, Mn₂O₃ and MnO₂ Catalysts," *Catal. Today*, 131, 477-482 (2008).